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Abstract—Visual object tracking is one of the fundamental
problems of computer vision, with wide-ranging application-
s including video surveillance, human-machine interfaces and
robot perception. Although visual tracking has been investigated
intensively in the past decade, it is still an enormous challenge in
real application because of various factors such as pose, occlusion,
scale and illumination. Recent tracking algorithms can be split
into two main modules generally: feature extraction and tracking
model. This report shows a perfect online tracker, which was
extensively evaluated on the CVPR 2013 Tracking Benchmark
(TB-50) including 50 sequences and the Amsterdam Library of
Ordinary Videos (ALOV300++) dataset. The experimental results
demonstrated the superior performance of it in comparison with
other state-of-art trackers.

Index Terms—perfect tracker, TB-50, ALOV300++;

I. EXPERIMENTAL RESULTS

The proposed tracker is implemented in MATLAB 2013A
on a PC with Intel Core2 CPU (2.66 GHz) with 2 GB memory,
and runs about 50 frames per second (fps) in this platform.

A. CVPR TB-50

We compared the proposed method with 10 state-of-the-
art trackers (TGPR[1], KCF[2], Struck[3], SCM[4], TLD[5],
CXT[6], VTD[7], VTS[8], CSK[9], ASLA[10], LOT[11],
OAB[12]) on the CVPR2013 benchmark [13] that includes
50 sequences showed in Fig. 1. Each sequence is tagged with
a number of attributes indicating to the presence of 11 dif-
ferent challenges, including Illumination Variation (IV), Scale
Variation (SC), Occlusion (OCC), Deformation (DEF), Mo-
tion Blur (MB), Fast Motion (FM), In-Plane Rotation (IPR),
Out-of-Plane Rotation (OPR), Out-of-View (OV), Background
Clutters (BC), Low Resolution (LR). The best way to evaluate
trackers is still a debatable subject. Averaged measures like
mean center location error or average bounding box overlap
penalize an accurate tracker that fails for short-time more than
an inaccurate tracker. According to [13], the precision plot
shows the percentage of frames on which the Center Location
Error (CLE) of a tracker is within a given threshold e, where
CLE is defined as the center distance between tracker output
(x̂, ŷ) and ground truth (xg, yg).

Fig.2 shows the precision plots containing the mean error
over all the 50 sequences, and a representative precision score
(e = 20) is used for ranking. In the precision plot, the proposed
tracker outperforms TGPR[3] by 4.9% in mean CLE at the
threshold of 20 pixels. On the other hand, the tracking drift of

Fig. 1. CVPR 2013 Tracking Benchmark (TB-50) for evaluation

our tracker is less than the baseline KCF in the high-precision
(e < 20), and our tracker also acquires the more high accuracy
than KCF.

B. ALOV++

To further validate the robustness of our tracker, we conduct-
ed the second evaluation on a larger dataset [14], namely Am-
sterdam Library of Ordinary Videos (ALOV300++) showed
as Fig. 3, which is recently developed by Smeulders et al..
It consists of 14 challenge subsets, totally 315 sequences
and focuses on systematically and experimentally evaluating
trackers robustnesses in a large variety of situations including
illuminations, transparency, specularity, confusion with similar
objects, clutter, occlusion, zoom, severe shape changes, motion
patterns, low contrast, and so on. In [14], survival curves based



Fig. 2. Precisions plots comparing with state-of-the-art trackers

Fig. 3. Amsterdam Library of Ordinary Videos (ALOV300++) for evaluation

on F-score were proposed to evaluate trackers robustnesses
and demonstrated its effectiveness. To obtain the survival
curve of a tracker, a F-score for each video is computed as
F = 2 × (precision × recall)/(precision + recall), where
precision = ntp/(ntp + nfp), recall = ntp/(ntp + nfn),
and ntp, nfp, nfn respectively denote the number of true
positives, false positives and false negatives in a video. A
survival curve shows the performance of a tracker on all videos
in the dataset. The videos are sorted according to the F-score.
By sorting the videos, the graph gives a birds eye view in
cumulative rendition of the quality of the tracker on the whole
dataset.

To evaluate our tracker on ALOV300++ dataset, We com-
pare our tracker with 19 popular trackers that were evaluated
in [14]. In addition, we also ran MEEM[15] on ALOV++,
which ranks the second best in the previous evaluation. The
survival curves of the top ten trackers and the average F-scores
over all sequences are shown in Figure 4, which demonstrates
that our tracker achieves the best overall performance over 21
compared trackers in this comparison. The average F-score
of our tracker on ALOV300++ is 0.74, which is significantly
better than Struck (0.66)[3], MEEM (0.65)[15], TLD (0.61)[5]
and the other competitors.

II. CONCLUSION

In this work, we demonstrate that it is possible to build
a perfect model to track targets successfully, which achieves
excellent result in complicated and diverse environments. The
experimental results on two large datasets demonstrate that the
proposed tracker is capable of taking advantage of both the

Fig. 4. The survival curves for top ten trackers on AlOV++ dataset

short-term and long-term systems and significantly boosting
the tracking performance.
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