A Coarse-to-Fine Approach for Motion Pattern Discovery

Bolun Cai, Zhifeng Luo, Kerui Li
South China University of Technology

This work is supported by University Innovation Research and Training Program of Guangdong Province(1056111033)
LBS
Promising Applications

Logistics Monitoring

Transport Scheduling

Movement Prediction
Coarse-to-fine Approach

Coarse Clustering
A Median-based GMM

Refined Separation
Fisher optimal division method
Coarse Clustering

I
\[P(v_i) = \sum_{k=1}^{K} \pi_k N(v_i | \mu_k, \sigma_k) \]

II
\[\sum_{i=1}^{L} \log \left\{ \sum_{k=1}^{K} \pi_k N(v_i | \mu_k, \sigma_k) \right\} \]

III
\[\gamma(k|v_i) = \frac{\pi_k N(v_i | \mu_k, \sigma_k)}{\sum_{j=1}^{K} \pi_j N(v_i | \mu_j, \sigma_j)} \]

VI
\[\Gamma(k|v_i) = \frac{\gamma'(k|v_i)}{\sum_{k-1}^{K} \gamma'(k|v_i)} \]
Refined Separation

\[D_k(i' - n, i' + n) = \sum_{t=i' - n}^{i' + n} (v_t - \overline{v}) \]

\[c = \arg \min_{i'} \sum_{k=1}^{K} D_k(i' - n, i' + n) \]
Data Collection System

Android Phone → GPS Satellite → GPS Signal → Wireless communicate → Sina App Engine (SAE) → Server → Database
The Real GPS Data
Clustering Result

K-means

FCM

GMM

The proposed algorithm
Accuracy by Different Methods

Table 1 Accuray on the LDPA data set

<table>
<thead>
<tr>
<th>Method</th>
<th>K-means</th>
<th>FCM</th>
<th>GMM</th>
<th>Proposed Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>78.04%</td>
<td>78.64%</td>
<td>79.75%</td>
<td>88.15%</td>
</tr>
</tbody>
</table>

Table 2 Accuracy on the real GPS data

<table>
<thead>
<tr>
<th>Method</th>
<th>K-means</th>
<th>FCM</th>
<th>GMM</th>
<th>Proposed Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>79.65%</td>
<td>79.73%</td>
<td>83.38%</td>
<td>93.74%</td>
</tr>
</tbody>
</table>
π_k for different motion patterns

Driving → Biking

Walking → Biking

Walking → Driving → Biking

Walking → Biking → Walking
The parameter selection

The effect of m on the accuracy

The effect of n on the accuracy

\[
\gamma'(k|\nu_i) = \text{Median}_{j=i-m}^{i+m} \gamma(k|\nu_j) \quad D_k(i' - n, i' + n) = \sum_{t=i'-n}^{i'+n} (\nu_t - \overline{\nu})
\]
Conclusion

A Median-based GMM

Fisher Optimal Division Method

Coarse To Fine

K Adaptive

More Accurate
Thank You!