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Abstract. Video dehazing has a wide range of real-time applications,
but the challenges mainly come from spatio-temporal coherence and
computational efficiency. In this paper, a spatio-temporal optimization
framework for real-time video dehazing is proposed, which reduces block-
ing and flickering artifacts and achieves high-quality enhanced results.
We build a Markov Random Field (MRF) with an Intensity Value Prior
(IVP) to handle spatial consistency and temporal coherence. By maxi-
mizing the MRF likelihood function, the proposed framework estimates
the haze concentration and preserves the information optimally. More-
over, to facilitate real-time applications, integral image technique is
approximated to reduce the main computational burden. Experimen-
tal results demonstrate that the proposed framework is effectively to
remove haze and flickering artifacts, and sufficiently fast for real-time
applications.

Keywords: Video dehazing · Spatio-temporal MRF · Intensity value
prior

1 Introduction

Haze is a traditional phenomenon where dust, smoke and other dry particles
obscure the clear atmosphere, which makes the image/video contrast lost and/or
vividness lost. The light scattering through the haze particles results in a loss of
contrast in the photography process. Video dehazing has broader and broader
prospects for real-time processing (e.g. automatic driving, video surveillance,
automobile recorder). Since the haze concentration is spatio-temporal relevant,
recovering the haze-free scene from hazy videos becomes a challenging problem.
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Various image enhancement techniques [7,12] are proposed to deal with sta-
tic image dehazing, which transform the color distribution without consider-
ing the haze concentration. Moreover, methods based on multi-image [11] or
depth-information [8] are employed, but the additional information is hard to be
acquired in real application scenes. Due to the use of strong priors, single image
dehazing methods have made significant progresses recently. Dark channel prior
[5] shows at least one color channel has some pixels with very low intensities in
most of non-haze patches; Meng et al. [10] propose an effective regularization
method to recover the haze-free image by exploring the inherent boundary con-
straint. Since the above algorithms only focus on static image dehazing, they
may yield flickering artifacts due to the lack of temporal coherence when applied
to video dehazing.

Little work has been done on video dehazing compared to extensive works
on static image dehazing. Tarel et al. [13] segment a car-vision video into moto-
rial objects and a planar road, then update the depth for haze removal based
on a image dehazing scheme [12]. Therefore, this method is unable to apply
in unrestraint conditions. To improve the spatio-temporal coherence, an optical
flow method [16] is introduced to optimize the haze concentration map, which
requires high computational complexity and is hard for real-time applications.
Kim et al. [6] optimize contrast enhancement by minimizing a temporal coher-
ence cost to reduce flickering artifacts. If the contrast is overstretched, some
saturation values are truncated resulting in computationally intensive. In [8],
authors combine depth and haze information to recover the clear scene. How-
ever, depth reconstruction depending on Structure-from-Motion (SfM) requires
high complexity, and cannot get satisfying performance in the distance.

Extending image dehazing algorithm to video is not a trivial work. The chal-
lenges mainly come from the following aspects:

– Spatial consistency. There are two constraints of spatial consistency. The haze
concentration is locally constant to overcome the estimation noise. In addition,
the recovered video should be as natural as the original one to handle inner-
frame discontinuity.

– Temporal coherence. Human visualization system is sensitive to temporal
inconsistency. However, applying static image dehazing algorithm naively on
frame-by-frame may break the temporal coherence, and yield a recovered video
with severe flicking artifacts.

– Computational efficiency. The algorithm must be able to efficiently process the
large number of pixels in video sequences. In particular, a practical real-time
dehazing method should reach a speed of at least 15 frames per second.

In this paper, we build a spatio-temporal MRF with IVP to optimize haze
concentration estimation. This method effectively assures the spatial consistency
and temporal coherence of video dehazing. In addition, integral image technique
[14] is used for efficiently computing in O (N) time to reduce the main computa-
tional burden. Typically, the only single CPU implementation achieves approx-
imately 120 frames per second for real-time video with the size of 352 × 288.
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2 Real-Time Video Dehazing

Currently, all of the static images dehazing algorithms can obtain truly good
results on general outdoor images. However, when applied to each frame of a
hazy video sequence independently, it may break spatio-temporal coherence and
produce a recovered video with blocking and flickering artifacts. Moreover, its
high computational complexity prohibits real-time applications. In this section,
we propose a spatio-temporal optimization framework for real-time video dehaz-
ing, which is shown in Fig. 1.

2.1 Single Image Haze Removal

Single image haze removal is a classical image enhancement problem. According
to empirical observations, existing methods propose various assumptions or prior
(e.g. dark channel [5], maximum contrast [6] and hue disparity [1]) to estimate
the haze concentration. Based on the atmospheric scattering model and the haze
concentration, the haze-free image is recovered easily.

Atmospheric Scattering Model. To describe the formation of a hazy image,
the atmospheric scattering model is proposed by McCartney [9]. The atmospheric
scattering model can be formally written as

I (x) = J (x)T (x) + A (1 − T (x)) , (1)
where I (x) is the observed hazy image, J (x) is the real scene to be recov-
ered, T (x) is the medium transmission, A is the global atmospheric light, and
x indexes pixels in the image. The real scene J (x) can be recovered after A and
T (x) are estimated. The atmosphere light A is constant in the whole image, so
it is easy to estimate. The medium transmission map T (x) describes the light
portion that is not scattered and reaches the camera. Therefore, it is the key to
estimate an accurate haze concentration map.

Fig. 1. Spatio-temporal MRF for video dehazing. DCP is used to estimate the haze
concentration and an MRF is built based on IVP between inner-frame and inter-frame.
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(a)Synthetic image (b)Intensity value (c)Concentration (d)Residual error

Fig. 2. Intensity Value Prior. The residual error is close to zero, and shows that the
haze concentration is highly correlated with the intensity value.

Medium Transmission Estimation. Dark Channel Prior [5] (DCP) is discov-
ered based on empirical statistics of experiments on outdoor haze-free images.
In most of haze-free images, at least one color channel has some pixels whose
intensity values are very low and even close to zero. The dark channel is defined
as the minimum channel in RGB color space:

D (x) = minc∈{r,g,b}Ic (x) , (2)
where Ic (x) is a RGB color channel of I (x). The dark channel prior has a high
correlation to the amount of haze in the image, and is used to estimate the
medium transmission directly as T̃ (x) = 1 − ωD (x) /A, where a constant para-
meter ω is introduced to map dark channel value to the medium transmission.
We fix it to 0.7 for all results reported in this paper.

2.2 Spatio-Temporal MRF

To handle blocking and flickering artifacts, the haze concentration map should
be refined by spatio-temporal coherence. Based on an intensity value prior, a
spatio-temporal MRF is built to fine-tune the haze concentration map, as which
the dark channel map D (x) is regarded in this paper.

Intensity Value Prior. With the wide observation on hazy images, the inten-
sity values of pixels in a hazy image vary sharply along with the change of the
haze concentration. To show how the intensity value of pixels vary within a hazy
image, Fig. 2 gives an example with an image synthetized by known haze con-
centration. It can be deduced from A (1 − T (x)) in the atmosphere scattering
model, that the effect of the white or gray airlight on the observed values is
related to the amount of haze. Thus, caused by the airlight, the intensity value
is increased while haze concentration is enhanced.

Spatial Consistency. The pixel-level concentration estimation may fail to work
in some particular situations. For instance, outlier pixel values in an image result
in inaccurate estimation of the haze concentration. Based on the assumption that
the haze concentration is locally constant, local filters (e.g. minimum filter [17],
maximum filter [2] and medium filter [4]) are commonly to overcome this prob-
lem. However, blocking artifacts appear in the haze concentration map because
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of these local filters. To handle the locally constant and inner-frame continuity, a
spatial MRF is built based on IVP. In spatial neighborhood, the intensity value
V (x) is linear transformed to the haze concentration D (x), and the transfor-
mation fields W = {w (x)}x∈∀ and B = {b (x)}x∈∀ are only correlated with the
contextual information. The spatial likelihood function is

Ps (w, b) ∝
∏

y∈Ω(x)

exp

(
−‖w (x) V (y) + b (x) − D (y)‖22

σ2
s

)
, (3)

where Ω (x) is a local patch centered at x with the size of r × r, and σs is the
spatial parameter.

Temporal Coherence. Flicking artifacts can be avoided by the relevant infor-
mation between consecutive frames. The haze concentration changes due to cam-
era and object motions. As an object approaches in the camera, the observed
radiance gets closer to the original scene radiance. On the contrary, when an
object moves away from the camera, the observed radiance becomes more sim-
ilar to the atmospheric light. Thus, we can modify the haze concentration of
a scene point adaptively according to its intensity value change. As shown in
Fig. 3, the haze concentration of the neighbor frame can be transformed to the
current frame’s by IVP, which is similar to block-matching of optical flow esti-
mation. As with the spatial consistency, a temporal MRF is used for temporal
coherence, and at time t its likelihood function is defined by

Pτ (wt, bt) ∝
∏

τ∈[−f,+f ]

exp

(
−‖wt (x) Vt (x) + bt (x) − Dt+τ (x)‖22

σ2
τ

)
, (4)

where f is the number of neighbor frames, and στ is the temporal parameter.
Along the spatio-temporal dimension, we improve the spatial consistency and

temporal coherence with an uniform likelihood function, which is rewritten as

P (wt, bt) =
∏

τ∈[−f,+f ]

∏

y∈Ω(x)

exp

(
−‖wt (x) Vt (y) + bt (x) − Dt+τ (y)‖22

σ2
τ

)
, (5)

where σs is omitted because it is assumed as a constant in this paper.

Fig. 3. Inter-frame correlation of the haze concentration. The intensity map Vt (x) in
current frame is transformed to the haze concentration map Dt,t−1 (x) in neighbor
frames. The absolute error map between D̃t (x) and D̃t−1 (x) is close to zero.
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2.3 Maximum Likelihood Estimation

The log-likelihood function is more convenient to work with maximum likeli-
hood estimation. Taking the derivative of a log-likelihood function and solv-
ing for the parameter, is often easier than the original likelihood function. Let
temporal weights λτ = 1/σ2

τ (s.t.
∑

τ λτ = 1) to express conveniently, and the
log-likelihood function of Eq. 5 is given by:

L (wt, bt) =
∑

τ∈[−f,+f ]

∑

y∈Ω(x)

−λτ ‖wt (x)Vt (y) + bt (x) − Dt+τ (y)‖22 (6)

To find the optimal random fields W and B, the maximum log-likelihood
estimation is written as (wt, bt) = arg maxL (wt, bt). We maximize the probabil-
ity by solving the linear system from ∂L (wt, bt)/∂wt = 0 and ∂L (wt, bt)/∂b = 0,
and generate the final haze concentration map by D̃t (x) = wt (x)Vt (x)+ bt (x).⎧

⎨

⎩
wt (x) =

∑
τ λτ (UΩ [Vt (x) Dt+τ (x)] − UΩ [Vt (x)] UΩ [Dt+τ (x)])

UΩ [V 2
t (x)] − U2

Ω [Vt (x)]
bt (x) =

∑
τ λτUΩ [Dt+τ (x)] − wt (x) UΩ [Vt (x)]

(7)

Here, U [·] is a mean filter defined as U [F (x)] = (1/|Ω|) ∑
y∈Ω(x) F (y), and |Ω|

is the cardinality of the local neighborhood.

2.4 Complexity Reduction

A main advantage of the spatio-temporal MRF built in this paper is that it natu-
rally has an O (N) time non-approximate acceleration. The main computational
burden is the mean filter U [·] with the local neighborhood. Fortunately, the
mean filter can be efficiently computed in O (N) time using the integral image
technique [14], which allows for fast computation of box type convolution filters.
The entry of an integral image represents the sum of all pixels in the input image
within a rectangular region formed by the origin and current position. Once the
integral image has been computed, it takes three additions to calculate the sum
of the intensities over any rectangular area. Hence, the calculation time of the
mean function is independent of its size, and the maximum likelihood estimation
in Sect. 2.3 is naturally O (N) time.

3 Experiments

We analyze the validity of the proposed framework and compare it with the
state-of-art image/video dehazing methods, including DCP [5], BCCR [10],
MDCP [4], IVR [13], OCE [6]. Based on the transmission estimated and
the atmospheric scattering model, a haze-free video can be recovered by (1).
The atmospheric light A is estimated as the brightest color [3] in an image:
A = maxx∈∀

(
miny∈Ω(x)V (y)

)
. At the t-th frame, the airlight is updated by

At = ρA + (1 − ρ) At−1, where ρ = 0.1 is a learning parameter. The other para-
meters mentioned in Sect. 2.2 are specified as follows: the number of neighbor
frames f is set to 1, and the temporal weights λτ is set to a Hanning window.
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3.1 Temporal Coherence Analysis

Temporal coherence is the main challenge compared to static image dehazing.
However, the evaluation of temporal coherence is difficult on real videos since no
reference is available. To show the proposed framework can suppresses flickering
artifacts well, we compare the mean intensity value (MIV) between consecutive
frames on five hazy videos, which are synthesized from non-haze videos1 with
flat haze T (x) = 0.6.

Figure 4 plots MIV between consecutive frames in Suzie and Foreman. When
the static dehazing algorithms (including DCP [5], BCCR [10], MDCP [4]) are
independently applied to each frame, the MIV curves experience relatively large
fluctuations as compared with the original sequences, especially between 50–
75 frames in Fig. 4(a) and 175–225 frames in Fig. 4(b). We also quantify the
flickering artifacts based on the correlation analysis of MIV between the dehazing
result and the original video, shown in Table 1. In contrast, our video dehazing
method alleviates the fluctuations and reduces the flickering artifacts efficiently.

Orgin Hazy Ours Orgin Hazy Ours

(a) Suzie (b) Foreman

Fig. 4. Comparsion of the mean intensity value in consecutive frames.

3.2 Quantitative Results on Synthetic Videos

To verify the dehazing effectiveness, the proposed framework is tested on hazy
videos synthesized from stereo videos [15] with a known depth map2, and it
is compared with 5 representative methods. Among the competitors, MDCP
[4], IVR [13] and OCE [6] are the most recent state-of-the-art video dehazing
1 http://trace.eas.asu.edu/yuv/.
2 http://www.cad.zju.edu.cn/home/gfzhang/projects/videodepth/data/.

http://trace.eas.asu.edu/yuv/
http://www.cad.zju.edu.cn/home/gfzhang/projects/videodepth/data/
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Table 1. The correlation coefficients of MIV between dehazing and original videos

DCP [5] BCCR [10] MDCP [4] IVR [13] OCE [6] Ours

Suzie 0.783 0.612 0.641 0.584 0.649 0.976

Foreman 0.980 0.920 0.015 0.949 0.994 0.995

Container 0.929 0.703 0.927 0.998 1.000 0.955

Hall 0.784 0.429 0.444 0.824 0.845 0.991

Silent 0.853 0.898 0.936 0.892 0.770 0.990

Avg. 0.866 0.712 0.592 0.849 0.851 0.982

methods; DCP [5] and BCCR [10] are classical static image dehazing methods
which are used as comparison baselines. The hazy video is generated based on
(1), where we assume pure white atmospheric airlight A = 1.

To quantitatively assess these methods, we calculate Mean Square Error
(MSE) between the original non-haze video and dehazing result. A low MSE
represents that the dehazed result is satisfying while a high MSE means that
the dehazing effect is not acceptable. In Table 2, our method is compared with
5 state-of-the-art methods on three synthetic video. Our method achieves the
lowest MSEs outperforming the others.

Table 2. The dehazing results of MSE on the synthetic videos

DCP [5] BCCR [10] MDCP [4] IVR [13] OCE [6] Ours

Flower 0.0228 0.0240 0.0257 0.0479 0.0174 0.0034

Lawn 0.0198 0.0176 0.4902 0.0141 0.0408 0.0166

Road 0.0141 0.0191 0.0108 0.0364 0.0274 0.0092

Avg. 0.0189 0.0202 0.1756 0.0328 0.0285 0.0097

3.3 Qualitative Results on Real-World Videos

In addition, we also evaluate the performance of the proposed framework on
the real-world videos collected in related works. Figure 5 shows the results on
four representative sequences with different methods3. The contrast maximizing
methods (BCCR [10], IVR [13], OCE [6]) are able to achieve impressive results,
but they tend to produce over-saturated and spatial inconsistency (for example,
the mountain in Bali and the halo of the sky in Playground). In Fig. 5(c) and
(d), it is observed that the static image dehazing methods (DCP [5] and BCCR
[10]) yield severe flickering artifacts (such as, the road region in Cross and the
sky region in Hazeroad). Although, the OCE [6] method uses overlapped block
3 More comparisons can be found at http://caibolun.github.io/st-mrf/.

http://caibolun.github.io/st-mrf/
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a.

b.

c.

d.
Hazy DCP [5] BCCR [10] IVR [13] OCE [6] Ours

Fig. 5. Qualitative comparison of different methods on real-world hazy videos, includ-
ing (a) Bali, (b) Playground, (c) Cross, (d) Hazeroad.

filter to reduce blocking artifacts, there are still a small number of blocking
artifacts in the results. Compared with the other methods, our results avoid
image over-saturation and keep spatio-temporal coherence.

3.4 Real-Time Analysis

We evaluate the computational complexity of the proposed framework on hazy
videos with different sizes of general video standards. The experiments are run
on a PC with Intel i7 3770 CPU (3.4 GHz), and we report the average speed (in
fps) comparison with DCP [5], BCCR [10], MDCP [4], IVR [13], and OCE [6].
According to Table 3, our method is significantly faster than others and achieves
efficient processing even when the given hazy video is large. Typically, our frame-
work achieves the processing speed of about 120 fps on Common Intermediate
Format (CIF, 352 × 288), which is close to quadraple that of the real-time cri-
terion. Thus, the proposed framework leaves a substantial amount of time for
other processing, and is transplanted into embedded system easily.
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Table 3. Comparision of the processing speeds in terms of frames per second (fps)

DCP [5] BCCR [10] MDCP [4] IVR [13] OCE [6] Ours

CIF (352 × 288) 1.485 1.322 7.343 1.205 97.076 116.371

VGA (640 × 480) 0.566 0.467 2.430 0.171 30.539 36.609

D1 (704 × 576) 0.414 0.358 1.830 0.102 22.930 27.493

XGA (1024 × 768) 0.216 0.197 0.842 0.028 12.106 14.515

4 Conclusion

In this work, we propose a real-time video dehazing framework based on spatio-
temporal MRF. We introduce the notion of spatial consistency and temporal
coherence to yield a dehazed video without blocking and flickering artifacts.
Moreover, the integral image technique is applied to reduce the computational
complexity significantly. Experimental results demonstrate that the proposed
algorithm can efficiently recover a hazy video at low computational complexity.
However, DCP is unable to estimate the haze concentration in high accuracy.
Moreover, this spatio-temporal framework can be extended for other real-time
video processing. We leave these problems for future research.
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