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ABSTRACT

This paper presents a novel edge/structure-preserving image
smoothing via relativity-of-Gaussian. As a simple local regu-
larization, it performs the local analysis of scale features and
globally optimizes its results into a piecewise smooth. The
central idea to ensure proper texture smoothing is based on
cross-scale relative that captures the weak textures from the
most prominent edges/structures. Our method outperform-
s the previous methods in removing the detail information
while preserving main image content.

Index Terms— Image smoothing, edge/structure preserv-
ing, relative-of-Gaussian

1. INTRODUCTION

Edge/structure-preserving image smoothing has recently e-
merged as a valuable tool for a variety of applications in im-
age processing. In particular, it is often used to decompose an
image into a piecewise-smooth base layer and a local-volatile
detail layer. Such a decomposition may then be used for de-
tail enhancement [1, 2], HDR tone mapping [3, 4], structure
extraction [5, 6], and for other tasks.

Depending on the application, the preserving image s-
moothing operators (in Fig. 1) may be manipulated separate-
ly in various ways, which can be divided into local filter and
global optimization.
• Local filter is developed in different strategies, includ-

ing bilateral filter (BLF) [7] and local extrema filter (LEF)
[8]. These edge-aware filters tradeoff between details flatten-
ing and edge preservation between neighboring pixels by con-
sidering intensity difference. However, Gibbs phenomenon of
local filters will result in ringing-effect on the edge.
• Global optimization methods include total variation

(TV) [9], weighted least squares (WLS) [1] and relative total
variation (RTV) [5]. These methods restore images by global
optimization functions containing terms defined in L1 norm,
weighted L2 norm or relative norm. However, they all fo-
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cus on relatively small variance suppression and vulnerable
to textures.

We address these problems by proposing an edge/structure-
preserving image smoothing that can remove the texture
at any level. A local regularization called Relativity-of-
Gaussian (RoG) is optimized globally to identify potential
edges at any scale. As demonstrated in Fig.1 (g), the proposed
method can effectively eliminate texture without distorting
edge/structure.

2. SMOOTHING VIA RELATIVITY-OF-GAUSSIAN

2.1. Local Regularization

To identify variance at different scales, the Gaussian kernel
and its derivatives [10, 11, 12] are the effective smoothing ker-
nels for scale analysis. Such as [13], Difference-of-Gaussian
(DoG) was applied to locate key-points and identify scales of
high variation. Inspired by DoG, we describe a local regu-
larization called Relativity-of-Gaussian (RoG) to selectively
smooth the gradient ∇S. The RoG regularization is finally
expressed as

R =

∣∣∣∣Gσ1
∗ ∇S

Gσ2 ∗ ∇S

∣∣∣∣ , s.t. σ1 < σ2. (1)

A local Gaussian kernel Gσ is defined for scale selection:
Gσ (x, y) = exp

(
− 1

2σ

(
(x− x0)2 + (y − y0)2

))
, where σ

is a scale parameter and (x0, y0) is the center of the kernel.
We show a synthetic patch in Fig. 1 (a) contains weak

textures and strong edges/structures. Shown in Fig. 2, the
small-scale feature |Gσ1

∗ ∇S| contains almost all gradients
as (a); the large-scale feature |Gσ2

∗ ∇S| only contains strong
edges/structures as (b); the cross-scale relative is equivalent
to DoG to identify the variances at one scale as (c). Another
intuitive explanation of RoG is that a strong edge/structure
with identical patterns in neighbor contributes more similar-
direction gradients than weak texture with complex patterns.

2.2. Global Optimization

To effectively smooth different scale edges of the input im-
age I , the global optimization function is finally expressed by
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(a) Input (b) BLF [7] (c) LEF [8] (d) TV [9] (e) WLS [1] (f) RTV [5] (g) RoG

Fig. 1. Compare different edge/structure-preserving image smoothing on a noisy image. (a) Input. (b) BLF (σs = 12,
σr = 0.45). (c) LEF (r = 3). (d) TV (θ = 30). (e) WLS (λ = 0.35, α = 1.8). (f) RTV (λ = 0.015, σ = 3). (g) RoG (K = 3,
λ = 0.01, σ1 = 1, σ2 = 3).

(a) |Gσ1 ∗ ∇S| (b) |Gσ2 ∗ ∇S| (c) R =
∣∣∣Gσ1∗∇S
Gσ2∗∇S

∣∣∣
Fig. 2. RoG regularization captures the textures from the
prominent edges/structures (small-scale: σ1 = 1, large-scale:
σ2 = 3).

taking the RoG regularization:

argmin
S

‖S − I‖22+λ
(∥∥∥∥Gσ1

∗ ∇xS
Gσ2 ∗ ∇xS

∥∥∥∥
1

+

∥∥∥∥Gσ1
∗ ∇yS

Gσ2 ∗ ∇yS

∥∥∥∥
1

)
,

(2)
where I is the intensity of luminance or color channels, and
λ is the positive parameter. The first term ‖S − I‖22, which
corresponds to L2 data fidelity, is to minimize the distance
between smoothing result S and the input image I .

Since the RoG regularization is an L1-norm, its solution
cannot be obtained trivially. An iteratively re-weighted least
square [14] method is introduced to solve non-convex regu-
larization. The x-direction RoG regularization is discussed,
and the y-direction term can be dealt with similarly. By re-
organizing the regularization, x-direction RoG is written as:∥∥∥∥Gσ1

∗ ∇xS
Gσ2 ∗ ∇xS

∥∥∥∥
1

=

∥∥∥∥∥ (Gσ1
∗ ∇xS)2

(Gσ2 ∗ ∇xS) (Gσ1 ∗ ∇xS)

∥∥∥∥∥
1

≈

∥∥∥∥∥ Gσ1/2 ∗ (∇xS)
2

(Gσ2
∗ ∇xS) (Gσ1

∗ ∇xS)

∥∥∥∥∥
1

= Gσ1/2 ∗
1

|(Gσ2 ∗ ∇xS) (Gσ1 ∗ ∇xS)|
‖∇xS‖22

(3)

The second line in (3) is an approximation due to the convo-
lution decomposition for numerical solution. Then the RoG
regularization is decomposed into a quadratic term ‖∇xS‖22

and a non-linear weight wx,y as

wx,y = Gσ1/2 ∗
1

|(Gσ2
∗ ∇x,yS) (Gσ1

∗ ∇x,yS)|
(4)

Therefore, the global optimization is iteratively cycled
through. In particular, for the k-th iteration:

Sk = argmin
S

‖S − I‖22 +

λ
(
wx

∥∥∇xSk−1
∥∥2
2
+ wy

∥∥∇ySk−1
∥∥2
2

) (5)

Initializing S0 = I , we use matrix notation to rewrite the loss
function following quadratic form:

(S− I)
T
(S− I) + λ

(
STDT

xWxDxS+ STDT
yWyDyS

)
.

(6)
Here S and I are the vector representation of S and I re-
spectively, Wx,y is diagonal matrices containing the weights
wx,y , and the matrices Dx and Dy are discrete differentiation
operators. The vector S that minimizes Eq.(6) is uniquely de-
fined as the solution of a linear system

Sk =
(
1+ λLk−1

)−1
I. (7)

Here 1 is an identity matrix and Lk = DT
xW

k
xDx +

DT
yW

k
yDy is a sparse five-point Laplacian matrix [15]. To

reach O(N) complexity, a fast solver called preconditioned
conjugate gradient (PCG) [16] is used for speedup. The
whole optimization process is summarized in Algorithm 1.

2.3. Analysis

We analyze the RoG regularization with a few others on p-
reserving image smoothing, including edge-preserving and
structure-preserving.

2.3.1. Edge-preserving Smoothing

In Algorithm 1, if the maximum iterations number K = 1,
the object function is similarly turned to WLS [1], an edge-
preserving method. Differently to WLS, RoG calculates the
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Algorithm 1 Edge/Structure Preserving Smoothing via RoG
Input: Input image I, scale parameter σ1,2, positive parame-

ter λ and maximum iterations K.
Output: Smoothing result S.

1: initialize S0 ← I
2: for k = 1 to K do
3: compute weights wx,y in Eq. (4)
4: update Sk using (7)
5: end for

weights by original signal without the logarithmic transform.
While the logarithmic transform simulates human vision per-
ception mechanism described by Weber’s law [17]. Given a
stimulus signal S, the WLS’s weight in the log-transformed
domain is (∇ logS)−1 = S/∇S. When S is very large,
(∇ logS)−1 is amplified by S, which inevitably dominates
over the smoothing term in the high magnitude areas as Fig.
3 (b). Therefore, RoG uses the relative function on original
signal to preserve the edges coequally in the high and low
magnitude areas as Fig. 3 (c).

(a) Input (b) WLS [1] (c) RoG

Fig. 3. Compare edge-preserving scheme with WLS. (b) WL-
S (λ = 1.0, α = 1.2). The second edge in the high magnitude
areas is smoothed more than the first. (c) RoG (K = 1, the
others are same as Fig.1).

(a) Input (b) RTV: Gσ∗|∇S|
|Gσ∗∇S|

(c) RoG:
∣∣∣Gσ1

∗∇S
Gσ2∗∇S

∣∣∣
Fig. 4. Compare structure-preserving scheme with RTV. (b)
RTV (σ = 3). (c) RoG (σ1 = 1, σ2 = 3). RoG regularization
captures more clear textures without prominent structures.

2.3.2. Structure-preserving Smoothing

When K > 1, the proposed solver is similarity to an itera-
tive method for RTV [5] to extract structure from texture. For

RTV, structure feature is computed in a patch centered with
a single-scale Gaussian kernel, in which case the patches for
two adjacent pixels should have a large overlap, reducing the
feature discriminability. In contrast, RoG calculates the rela-
tive function with different Gaussian kernels (σ1 < σ2) to s-
tay clear of a prominent structure with high-resolution as Fig.
4 (c). Moreover, the relativity of cross-scale is a kind of band-
passed filter to selectively extract structures at any level.

3. EXPERIMENTS

To verify the edge/structure-preserving image smoothing, a
number of effective tools are implemented with RoG regu-
larization for detail enhancement, HDR tone mapping, and
structure extraction. We briefly describe these tools 1 and
show the comparison results with state-of-the-art methods.

3.1. Detail Enhancement

As a nonlinear edge-preserving image smoothing (K = 1),
our method can be used for detail enhancement via base and
detail layer decomposition. For example, we can simply re-
place the edge-preserving smoothing in the classical detail
enhancement framework with RoG-based smoothing. Halo
artifact and noise amplification are two major problems to
be addressed for detail enhancement. RoG-based detail en-
hancement avoid the mild halo and noise that are sometimes
visible in state-of-the-art results (in Fig. 5). To enhance the
details at multi-scale shown in Fig. 6, we also can construct a
multi-scale decomposition via σ1,2, which controls the expo-
sure and contrast of the base layer.

(a) Coarse-scale boost (b) Fine-scale boost (c) Combine

Fig. 6. Multi-scale detail enhancement with RoG edge-
preserving smoothing. (K = 1, λ = 0.001, coarse-scale:
σ1 = 1.0 and σ2 = 1.5, fine-scale: σ1 = 0.5 and σ2 = 1.0)

3.2. HDR Tone Mapping

One of the challenges in image processing is the rendering
of a High-Dynamic Range (HDR) scene on a conventional
Low-Dynamic Range (LDR) display. RoG smoothing is al-
so easily harnessed to perform tone mapping of HDR images.
Based on [3], the LCIS-based decomposition is simply re-
placed by our RoG-based smoothing. Since multi-exposure
fusion is the major problem to display surface reflections for

1More tools and comparisons can be found at https://caibolun.
github.io/RoG/.
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(a) Input (b) WLS [1] (c) LLF [18] (d) RTV [5] (e) mRTV [19] (f) RoG

Fig. 5. Detail enhancement compared with previous methods. In the close-ups, blue arrows point to the halo artifacts, and red
arrows point to the noise amplifications. (b) WLS (λ = 1.0, α = 1.2). (c) LLF (α = 2, σr = 0.4). (d) RTV (λ = 0.015,
σ = 0.5). (e) mRTV (k = 3, nitr = 5). (f) RoG (K = 1, λ = 0.001, σ1 = 0.5, σ2 = 1.0).

(a) HDR image (b) LCIS [3] (c) TR [20] (d) WLS [1] (e) LLF [18] (f) RoG

Fig. 7. HDR tone mapping compared with previous methods. The wood gloss is only restored faultlessly by RoG-based method.

HDR tone mapping, an exact base-layer decomposition is the
key to produce a LDR image. In Fig. 7, the gloss is hard to
be restored with high-level sheen except to RoG.

3.3. Structure Extraction

We compare our method with the state-of-the-art image s-
moothing techniques that were specifically designed for
structure-texture separation. The main structures are formed
by many edge with salient but fine texture boundaries, making
structure extraction very challenging. An excellent structure
extraction can capture really structures and reduce texture
interference. Results from RoG and other methods are pre-
sented in Fig. 8, and we have hand tuned parameters for these
methods.

4. CONCLUSION

We have presented an image smoothing methods via a novel
regularization called RoG, which is effectively to remove tex-
tures while preserving other content. The RoG regularization
is greatly extensible to accommodate various tools, and yields
decent performance. RoG is a general concept and does not
depend on any specific definition of scale feature. Therefore,
our future work will be to apply it to more applications.

(a) Input (b) WLS [1] (c) RC [21]

(d) RTV [5] (e) mRTV [19] (f) RoG

Fig. 8. Structure-preserving smoothing results, close-ups and
structure maps (generated by Canny [22]) compared with pre-
vious methods. The result based on RoG is smooth on the fish-
scales with the preserving of the fish eye. (b) WLS (λ = 1.0,
α = 1.2, k = 13). (c) RC (σ = 0.2, k = 19 , Mod 1). (d)
RTV (λ = 0.015, σ = 6). (e) mRTV (k = 7, nitr = 5). (f)
RoG (K = 4, λ = 0.01, σ1 = 2, σ2 = 4).
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