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Abstract. Lifelong Machine Learning (LML) has been receiving more
and more attention in the past few years. It produces systems that are
able to learn knowledge from consecutive tasks and refine the learned
knowledge for a life time. In the optimization process of classical full-
supervised LML systems, sufficient labeled data are required for extract-
ing inter-task relationships before transferring. In order to leverage abun-
dant unlabeled data and reduce the expenditure of labeling data, an
progressive lifelong learning algorithm (PLLA) is proposed in this paper
with unsupervised pre-training to learn shared representations that are
more suitable as input to LML systems than the raw input data. Exper-
iments show that the proposed PLLA is much more effective than many
other LML methods when few labeled data is available.
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1 Introduction

Over the last few decades there have been critical progresses in machine learning
theory and algorithms which aims to enable machines to learn intelligently like
human. However, the capacity of machines for persistent learning has a large
gap from that of human. And it is now appropriate to more seriously consider
the nature of systems that are capable of learning, retaining and using knowl-
edge over a life time [1]. It has a variety of related applications such as robotic
controlling [2], online image retrieval [3,4] and topic modelling [5–7].

Among all the LML algorithms, ELLA (Efficient Lifelong Learning Algo-
rithm) [8] is a representative and effective algorithm which achieves nearly iden-
tical performance to batch Multi-task Learning (MTL) [9] with three orders
of magnitude speedup in learning time. ELLA develops an efficient procedure
of updating shared knowledge between each learned task and improved perfor-
mance of learned task through reverse transfer. However, ELLA is a supervised
learning algorithm so that its training procedure needs plenty of labeled data
while labeling data needs the expenditure of much time and work especially
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under the current big data environment. The lack of labeled training data may
also restrict the model of ELLA to scale up. On the other hand, future machine
learning algorithms tend to learn without supervision.

In order to effectively exploit unlabeled data, this paper proposed an pro-
gressive lifelong learning algorithm (PLLA) based on ELLA and Deep Belief
Network (DBN) [10,11]. This is based on the fact that unsupervised deep learn-
ing methods can capture underlying regularities in the data and project all the
raw input data to a shared feature representation. When used to learn multifari-
ous and consecutive tasks, experiments show that hierarchically learned features
help to capture commonalities between tasks and gets much better performance
than ELLA and other LML methods when using less training labeled data.

2 Related Work

In this section, we introduce some LML and online multi-task learning (OMTL)
frameworks which is related to our work in sharing representations or integrating
hypothesis. Differences between PLLA and other methods are also illustrated.

Inspired by the short-term and long-term learning in psychology, Silver pro-
posed an algorithm of LML based on multi-task learning (MTL) neural network
[12]. In this framework, the input layer and hidden layer are shared among tasks
to transfer knowledge and the output nodes are task specific. Recently, Life-
long Learning of Discriminative Representations (LLDR) [13,14] extended the
MTL neural networks in order to deal with high dimensional problems and large
amount of tasks in actual lifelong learning. This framework is similar to our
work with shared hierarchical representations and task specific hypothesis. But
we have further considerations on the transferring of the hypothesis functions
and updating the representations with inherited gradients.

Compared to the above OMTL and LML paradigms where all tasks are in
a single group [15–17], learning task grouping may be a better way to transfer
knowledge between tasks in LML.

Disjoint grouping MTL (DG-MTL) [9] presented a model that can share rep-
resentations among tasks in the same group while learning the disjoint grouping
simultaneously. More recently, Mishra extended DG-MTL to fit in lifelong learn-
ing setting [18] which learned both partition functions and parameters online.
These algorithms have different assumptions on task grouping from ours where
tasks in different groups are totally untransferable.

Against the disjoint grouping models, the Grouping and Overlapping MTL
(GO-MTL) algorithm [19] is a rich model of underlying task structure exploit-
ing a sparsely shared basis. It automatically learns overlapping groups of tasks
that allowing two tasks from different groups to share knowledge by one or more
basis in common. Efficient Lifelong learning Algorithm (ELLA) [8] is developed
employing GO-MTL as its starting point, greatly reducing its running time while
retaining nearly identically performance. This work has been extended by the
authors in multiple ways as in [2,20]. This efficient LML framework of integrating
hypothesis is a fundamental part of our work. We adapt it for shared represen-
tations and introduce a new online updating strategy to ensure efficiency.
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3 Progressive Lifelong Learning with Shared
Representations

Lifelong Machine Learning considers systems that can learn many tasks from one
or more domains over its lifetime [1]. We employ a lifelong learning framework in
which the agent faces a series of supervised learning tasks Z(1), Z(2),...,Z(Tmax).
Each learning task Z(t) = (f̂ (t),X(t),y(t)) is defined by a hidden function
f̂ (t):X (t) → Y(t) from an instance space X (t) ⊆ R

d to a set of labels Y(t)

where t = 1, 2, ..., Tmax. To learn f̂ (t), the agent is given nt training instances
X(t) ∈ R

d×nt with corresponding labels y(t) ∈ Y(t)nt given by f̂ (t). Its goal is
to construct task-specific hypothesis function f (t) for each task t to ensure the
accuracy of labeling new data.

To model the relationships between tasks, it is assumed that the parameter
vectors θ(t) can be represented using a linear combination of k shared latent
model components from L ∈ R

d×k by computing θ(t) = Ls(t) where the weight
vector s(t) ∈ R

k is encouraged to be sparse.
PLLA is formed by two layers. The upper layer is the inferring layer based on

features extracted from the lower one. The lower layer is the shared hierarchical
feature model initialized by unsupervised pre-training. The structure of PLLA
is illustrated in Fig. 1.

Since we have integrated the shared feature representations and the potential
knowledge basis into a new model, the objective function is changed from that
of ELLA: (assume that the representations have only one layer of hidden units
for brevity)

eT (L,W) =
1
T

T∑

t=1

min
s(t)

{
1
nt

nt∑

i=1

L(f(sigmoid(W�x(t)
i );

Ls(t)), y(t)
i ) + μ‖s(t)‖1

}
+ λ‖L‖F2 .

(1)

Fig. 1. The framework of PLLA with DBN representations and integrated hypothesis.
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Algorithm 1. PLLA

Require: labeled data set (X
(t)
l ,y(t)) of current task t

Ensure: the library of learned knowledge L
and the hypothesis function f (t) with its parameters θ(t)

1: initialize Wl of each layer l with
⋃Tc

t=1 X
(t) by CD-k algorithm, (Tc is the number

of candidate tasks)
2: while isMoreTaskToLearn() do

3: (X
(t)
l ,y(t), t)← getTrainningDataSet()

4: apply visible to hidden algorithms to get Ht

5: θ(t) = argminθ
1
nt

∑nt
i=1 L(f(h

(t)
i ; θ(t)), y

(t)
i )

6: s(t) = argmins(t)fl(L, s(t), θ(t),D(t)), where D(t) is the Hessian matrix of the
loss function on task t

7: compute γt = (cos < s(t), s(t−1) > +1)/2
8: for i = 1 to maxepoch do
9: apply visible to hidden algorithms to get Ht

10: θ(t) = argminθ
1
nt

∑nt
i=1 L(f(h

(t)
i ; θ(t)), y

(t)
i )

11: for l = nl − 1 downto 0 do
12: if (i == 1)and(t ≥ 1)

13: gWt
l = γtgW

t−1
l + ∇WlL(f(Ht; θ(t)), y

(t)
i )

14: else
15: gWt

l = γcgW
t
l + ∇WlL(f(Ht; θ(t)), y

(t)
i )

16: end if
17: Wl = Wl − αgWt

l

18: end for
19: end for
20: get the new θ(t) by single task learners from (Ht,yt)
21: L ← argminL(λ‖L‖F

2 + 1
T

∑T
t=1 fl(L, s(t), θ(t),D(t)))

22: end while

However, Eq. 1 is not jointly convex in L and W, it is difficult and inefficient
to optimize them simultaneously. As described in the block of Algorithm1, we
make an online strategy that optimizing the feature representation matric W
firstly by minimizing the lost function on the labeled data of current task. The
gradients for updating each weighting matric at the first iteration is inherited
from the last one by a coefficient γ which capturing the relatedness between
tasks:

γt = dist(θ(t),θ(t−1))

= dist(Ls(t),Ls(t−1)))

= cos < s(t), s(t−1) >,

(2)

where dist() is the cosine distance of parameters between task t and task t − 1.
We also rescale γt to the range [0, 1].

The intuition is if current task and learned task are closely related, the angle
between their selecting vectors should be nearly the same. During the following
iterations, gradients are maintained with a hyper parameter γc.
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4 Experiments

In this section, we evaluate our proposed PLLA model against five baselines:
Single task learning (STL), Disjoint grouping MTL (DG-MTL)[9], LLDR [13],
ELLA [21] and Online multi-task boosting (OMB)[22]. In experiments, we
reduced the amount of labeled data of each task to [10%, 20%, ..., 100%]. We
ensure that all models exploit the same amount labeled data in the experiments.
We evaluate the performance on prediction over two databases: the Land Mine
Data set and the London School Data set.

4.1 Parameter Settings

All the comparing models have some hyper-parameters need to be confirmed by
the user. We also use gridsearch procedure if the algorithm has multiple hyper-
parameters which need to be selected.

In the STL mehtod, the regularization coefficient of regression is picked in
{exp(−5), exp(−4), ..., exp(5)}.

In DG-MTL, the number of groups are chosen from a pool of
{2, 3, 4, 5} and the values of regularization parameters are picked from
{0.001, 0.01, 0.1, 1, 10, 100}.

In ELLA, The parameter values of k and λ are selected independently
for each algorithm and data set using a gridsearch over values of k (the
number of hidden basis) from 2 to 10 and values of the ridge term for sin-
gle task learner, λ1 from the set {exp(−5), exp(−4), ..., exp(5)}. We also pick
the regularization parameters for the basis and the sparsity constraint from
{exp(−10), exp(−5), exp(−2), exp(1), exp(4)}. Other parameter settings follow
the default settings in the code that provided by the authors.

In PLLA and LLDR, the number of hidden layers nl is chosen over val-
ues nl ∈ {1, 2}. Since the size of the database is not huge, it is unneces-
sary to build deeper architectures. Hyper parameter γc in PLLA is picked
in {0.1, 0.2, ..., 0.9} by grid-search and the learning rate α is chosen in
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}. The regularization coefficient for single task
learning was selected in {exp(−5), exp(−4), ..., exp(5)}.

In OMB, the number of base learners is chosen from 5 to 20 and we exploit
Naive Bayesian classfiers as the base learners.

4.2 Land Mine Detection

In the Land Mine data set [23], the goal is to detect whether or not a land mine
is present in an area based on RADAR images. The 10 input features (plus a bias
term) are extracted from radar data. The data set consists of 14,820 instances
in total, divided into 29 different geographical regions. We treat each region as
a different task.

In this database, one hidden layer is formed in PLLA nl = 1 and the number
of hidden variables m is 10. In this database, the number of total labeled data
for each task varies from 449 to 690.

Since the land mine data is real-valued, we use Gaussian-Binary DBN in our
model instead of binary DBN.
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4.3 London School Data

The London School data set consists of examination scores from 15,362 students
in 139 schools from the Inner London Education Authority. We treat the data
from each school as a separate task. The goal is to predict the examination score
of each student with 27 different features.

In this database, one hidden layer is formed in PLLA nl = 1 and the number
of hidden variables m is 30. We also set a decreasing learning rate since this
dataset has much more tasks than others.

4.4 Results

Figure 2 left shows the results of the performance on prediction (AUC) with few
labeled data over the Land Mine Data set. The given average and the standard
deviation results are computed over running 100 times. It can be observed that
our proposed PLLA gets about 8% improvement than ELLA when only 10%
labeled data is leveraged.

Figure 2 right depicts the similar regularity on the London School Data set.
PLLA is always more efficient than ELLA when few labeled data are exploited.
On the other hand, the result with only 30% of labeled data in PLLA is nearly
identical to the result of ELLA with 100% labeled data. DG-MTL does not
fit for this situation again with so many tasks to be learned. Its efficiency and
performance are both the worst.

Fig. 2. The results of training with different amount of labeled data on left: land mind
detection; right: London school

5 Conclusion

In order to reduce human effort in labeling data for supervised lifelong machine
learning, it is motivated to consider how to improve the performance on predic-
tion when few labeled data is available. In this paper, we proposed an effective
algorithm called PLLA. It can discover and leverage the hidden structures in the
unlabeled data to enhance the performance on prediction of supervised learning
especially when few label data is available.
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