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Abstract—Face verification is a task to determine whether a
pair of given facial images belong to the same person. In
unconstrained real applications, inter and intra variations,
including illumination, pose, occlusion, and expression, will
seriously decrease the verification performance. Due to the
lack of annotated data for face verification, extended datasets
for face recognition with large samples are used to assist
learning a robust feature representation generally. However,
the extended data for face recognition is different from face
verification on distribution and task. In this paper, a transfer
learning based on PCA-SVM is proposed to alleviate above
problem. The original feature representation is learnt from
a deep convolutional neural network by face classification.
Then a PCA-SVM based transfer method is used for feature
reprojection from the source domain (face recognition) to the
target domain (face verification), which reduces the divergence
of feature distribution and task inconsistency. The proposed
framework yields comparable results and the accuracy is
98.5% on LFW dataset.

1. Introduction

Face verification is an important research area in com-
puter vision and can be widely applied for facial automatic
identity. The robust feature representation is crucial for
face verification, and many hand-crafted features (e.g. Local
Binary Pattern (LBP) [1], Haar-like feature [2], and Gabor
wavelets [3]) can perform well in constrained applications.
In real unconstrained environment, inter-class and intra-
class variations will degrade the verification performance.
Therefore, many researches are focused on learning invariant
and discriminative facial feature representations during the
past decade.

Convolutional neural networks (CNNs) have demonstrat-
ed state-of-the-art performance in many computer vision
applications, such as image classification [4], object de-
tection [5], salient detection [6], and image enhancement
[7]. An evaluation [8] about automatic face recognition in
unconstrained environments showed that the best performing
system cannot rely on hand-crafted features only. Taigman
et al. [9] employed a 3D face modeling for alignment and
derived a face representation based on a nine-layer deep
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neural network. The robust feature representation learnt
from four million labeled data belong to more than 4,000
identities, which achieves the accuracy closing to human-
level on LFW dataset [10]. In [11], the training sample
selecting mechanism and the network transferability is s-
tudied to improve feature representation. From above, the
trend of using CNNs to learn robust feature representation
from large-scale extended dataset is obvious.

Deep learning provides more powerful tools to learn
invariant and discriminative feature representation, but large
training data is needed to cover various variations. Due to the
requirement of plenty diversity samples for network training,
CNN based face verification methods employ additional
training data and are trained as classification tasks generally.
Therefore, these models may suffer the performance degra-
dation because of the divergence of feature distribution and
training task between the source domain (face recognition)
and the target domain (face verification). In [12], a deep
network called DeepID with four convolutional layers was
proposed to extract features hierarchically. The generaliza-
tion capability of DeepID is to increase as more face classes
for recognition training. For face verification, joint Bayesian
technique [13] was used to deal with the divergence of
feature distribution. However, the training of Bayesian mod-
el also needs large annotated data to keep intra-personal
invariant. To reduce intra-personal variations while large
inter-personal differences, Sun et al. [14] introduced face
recognition and verification as double supervision signals
based on multi-task learning. Then more discriminative fea-
ture representation improvements (DeepID2+ [15], DeepID3
[16]) were made based on [14]. The hyper-parameters to
balance the supervision signals between recognition and
verification are hard to be selected in multi-task learning.

In this paper, a transfer learning framework is pro-
posed for feature reprojection from face recognition to face
verification. Firstly, Principal Component Analysis (PCA)
[17] is used to minimize the feature distribution deviations
between different datasets by mapping the high-dimensional
features to a low-dimensional subspace. To transfer the face
recognition task to the face verification task, Support Vector
Machine (SVM) [18] is adopted to determine whether a pair
of given facial images belong to the same person. The main
contributions of this paper are:

• We propose a feature transfer framework based on
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PCA-SVM to deal with the divergence of feature dis-
tribution and task inconsistency between the source
domain (face recognition) and the target domain
(face verification).

• The feature representation learnt from the CASIA-
WebFace dataset [19] achieves a comparable per-
formance on LFW benchmark [10] with a single
network.

The remainder of this paper is organized as follows.
Section 2 describes a face recognition method based on
Lightened CNN. Details of PCA-SVM framework proposed
by us are given in Section 3 and the experiments are shown
in Section 4. Finally, Section 5 makes a conclusion of our
work.

2. Lightened CNN for Face Recognition

To reduce the waste of calculations and parameters, a
lightened CNN architecture was proposed in [20], which
can learn a compact embedding for face representation.
The architecture of Lightened CNN is illustrated in Fig. 1.
There are two kinds of deep models developed in [20]: the
ModelA contains 4 convolutional layers, Max-Feature-Map
(MFM) activation functions, 4 max-pooling layers, and a
fully connected layers; differently to ModelA, the ModelB
contains 5 convolutional layers and 4 Network in Network
(NiN) [21] layers, which reduce the kernel size and accel-
erate calculation. In both ModelA and ModelB, the MFM
activation function is defined as the maximum between two
convolutional feature maps, and used to extract invariant and
discriminative features. The representation feature vector
learnt through lightened CNN is written as

f cnn = Fcnn (I,Θ) , (1)

where Fcnn is the feature extraction function defined by
Lightened CNN, Θ is the model parameters, and I is an
aligned facial image.

Lightened CNN is trained on the CASIA-WebFace
dataset. A fully connected layers with softmax function is
used to achieve the probability distribution p over the facial
identities:

p = σ (Wf cnn +B) . (2)

σ (·) denotes the softmax function, and W , B are weight
and bias parameters respectively. The network is trained to
minimize the likelihood distance E on the face recognition
task.

E (Θ) =
1

MN

N∑

n=1

M∑

m=1

yn,m log (pn,m), (3)

where yn,m is the training sample label, and pn,m is the
predicted probability. Here M is the number of facial i-
dentities and N is the total number of training samples in
CASIA-WebFace dataset.

3. PCA-SVM Based Feature Transfer

Due to the data distribution and task divergence between
the source domain and the target domain, the model trained
on the face recognition task lacks a powerful generalization
ability for face verification. In this section, a PCA-SVM
based transfer learning framework from recognition to veri-
fication is proposed, and the framework is illustrated in Fig.
2. We adopt PCA to minimize the distribution deviations
between the training dataset (CASIA-WebFace) and the test
dataset (LFW) by reprojecting the high-dimensional features
to a low-dimensional subspace. Then, to transfer the source
task (face recognition) to the target task (face verification),
SVM is used to determine whether the given facial images
belong to the same person.

Figure 2. PCA-SVM framework for feature transfer.

3.1. Distribution Transfer Based on PCA

Known as domain transfer, the effort to bridge the gap
between training and testing data distributions has been
discussed under the context of deep learning [22], [23]. All
of these methods face the same challenge of constructing the
domain transfer function – a high-dimensional non-linear
function. To narrow the distribution gap, PCA is adopted to
reproject the original features to the principal subspace in a
linear way, which maximizes the variance and minimizing
the error. Therefore, we can easily transfer the trained model
to a new domain by modulating the statistics by PCA. PCA
based distribution transfer is straightforward to implement,
has zero parameter to tune, and requires minimal computa-
tional resources. The feature after PCA projecting not only
reduces the redundancy and noise, but also decreases the
computational complexity. The feature transfer process is
shown in Fig. 3.

To reduce the dimension of the original feature space,
PCA is used to find the projection direction which is the
most effective representation of the original data by the least
mean square error. Fcnn is the feature matrix as Fcnn =
{f cnn

1 , f cnn
2 , ..., f cnn

N }, where N is the sample number on
the target dataset. The covariance matrix C is defined as

C =
(
Fcnn − f̄ cnn

) (
Fcnn − f̄ cnn

)T
, (4)
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Figure 1. An illustration of the architecture of lightened CNN for face recognition.

Figure 3. Distribution transfer based on PCA.

where f̄ cnn=1/N
∑N

n=1 f
cnn
n is the mean value of feature

vectors. The covariance matrix C uses mean-value bias to
perform data normalization for the training domain and the
test domain. The projection weight wpca can be obtained
by Singular Value Decomposition (SVD) on the covariance
matrix: C = WΣW−1. Here W = {wpca} is a orthog-
onal eigenvector matrix, and Σ is a diagonal matrix with
eigenvalues λ. Sorting the eigenvalues in descending order
to select top-D principal components, the transferred feature
fpca is described as

fpca = {wpca
i }Di=1 f

cnn, (5)

where D is the dimension of fpca.

3.2. Task Transfer Based on SVM

Face recognition is a multiple classification problem,
which focuses on selecting the best matching from the
candidate templates and determining the class identity of
the image. While face verification is a one-to-one matching
problem, which focuses on whether a pair of input faces
coming from the same individual. SVM is adopted in our
framework for task transfer (see Fig. 4). In addition, Radial
Basis Function (RBF) kernel is used as a nonlinear trans-
formation to extract more robust feature space. Therefore,
SVM can achieve the global optimization in the process of
task transfer and improve the accuracy of face verification.

The faces of the same individual may be very different
suffering from the variance pose, illumination, expression,
and occlusion. Therefore, it is crucial to reduce the intra-
class variations while enlarging the inter-class differences
for face verification. For the target domain, we use pairs to

Figure 4. Task transfer based on SVM.

train the verification model, the L1 distance between a pair
of facial images is described as

d = ‖fpca
A − fpca

B ‖1 , (6)

where fpca
A and fpca

B are two random samples of the verifica-
tion task. A hyperplane is trained to distinguish the label of
an input pair y ∈ {+1,−1}, where +1 represents the input
pair belonging to the same person, and −1 indicates the pair
from the different persons. The kernel-based classification
function is

fsvm (d) = wsvmΦ (d) + b, (7)

where Φ (·) is the nonlinear mapping of feature distance d,
and wsvm and b are the weights and bias respectively.

The parameters wsvm and b be solved by minimizing
the criterion function:

J (wsvm, b) =
1

2
‖wsvm‖2 + C

1

N

N∑

n=1

L (yn, f
svm (dn)),

(8)
where L is the hinge-loss function and C is the penalty
factor. By introducing the method of Lagrange equation
to solve the above problem, we can obtain the following
discriminant function:

fsvm (d) =
∑

di∈V
(αi − α∗i )K (di, d) + b, (9)

where V is the support vector set, α is the Lagrange multi-
plier, and K (di, dj) = Φ (di) Φ (dj) is the kernel function.

4. Experiments

In the experiment, we use CASIA-WebFace [19] dataset
as the source domain and LFW [10] dataset as the target
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domain. Firstly, the CASIA-WebFace dataset is used to train
the lightened CNN [20]. The facial samples are correct-
ed to gray-scale image with 20 pixel pupil-distance and
then cropped into 144 × 144 randomly for training. The
Caffe [24] package is implemented to train the lightened
CNN with Stochastic Gradient Descent (SGD) method in
the source domain. We test the proposed framework on
the target domain (LFW dataset), which is collected in
unconstrained conditions including 13,233 images of 5,749
persons for face verification. The accuracy and Receiver Op-
erating Characteristic (ROC) curve are adopted to evaluate
the performance of our transfer framework.

4.1. Analysis of Distribution Transfer

To evaluate the effectiveness of distribution transfer
based on PCA on the LFW database, we directly calculate
the Euclidean distance of a pair and use a linear classifica-
tion plane to whether a pair of given facial images belong
to the same person.

The accuracy of different PCA dimensions is shown in
Table 1. We can see that the highest accuracy can be ob-
tained when the dimension is set to 70 for ModelA and 100
for ModelB. In addition, the verification accuracy can also
be improved by feature reprojection without dimensionality
reduction. The ROC curves and the average accuracy on
LFW dataset are shown in Figure 5, which demonstrates
that the PCA based distribution transfer achieves the bet-
ter overall performance compared to original ModelA and
ModelB. From the figure, we can see that ModelA-PCA
outperforms original ModelA by 0.23% in mean accuracy,
and ModelB-PCA is 98.40% compared to ModelB 98.13%
– a difference of 0.27%.

Figure 5. The ROC curves compared on distribution transfer.

TABLE 2. ACCURACY COMPARISONS ON TASK TRANSFER

Methods Average Accuracy (%)
ModelA [20] 97.77
ModelB [20] 98.13

ModelA-SVM (ours) 97.79
ModelB-SVM (ours) 98.18

4.2. Analysis of Task Transfer

We use the verification accuracy to evaluate the ef-
fectiveness and feasibility of SVM task transfer. In LFW
dataset, 90% of samples are randomly selected to train
SVM with RBF kernel, and the rest is used to test. The
average accuracy of the ten-fold cross validation is used as
a criterion for comparison. The hyper-parameters of SVM
are chosen by grid search (the penalty factor C = 128 and
the RBF parameter σ = 2−11 in this experiment). The result
of experiments comparison is shown in Table 2. In this
paper, we fuse CNN feature and SVM classifier to solve
task transfer problem. The introduction of SVM reduces the
influence of noise samples near the classification hyperplane.
In addition, nonlinear kernel (RBF) increases the inter-class
distance and reduces the inner-class distance. The mixture of
recognition and verification task learning extracts a more ro-
bust feature than single task. The accuracy of ModelA-SVM
and ModelB-SVM are 97.79% and 98.18% respectively, and
both are better than the original models.

4.3. Comparison of PCA-SVM framework on LFW

In this section, the fusion of PCA distribution transfer
and SVM task transfer evaluates the verification accuracy
in the LFW dataset. We compare the proposed framework
with deep learning based methods in LFW dataset, shown in
Table 3. The PCA-SVM framework proposed in this paper
solves the domain adaptation problem effectively.

The results of our framework on LFW verification out-
perform those of DeepFace [9], WebScale [11], DeepID
[12], DeepID2 [14], WebFace [19], VGGFace [25], M-
S UTR [26], MMN [27], and Lightened-CNN [20] for
single-network. In this paper, PCA-SVM framework pro-
posed for advanced learning combines the generative and
discriminative model: the distribution transfer based on PCA
is a generative model and the task transfer based on SVM as
a discriminative model. Clearly, the hybrid-model achieved
excellent performances in comparison to single-network.
Besides, our dataset is inferior to Facebook [9], CUHK [12]
and VGG [25]. Their training sets contain millions of images
while CASIA-WebFace only includes 0.5M images.

5. Conclusion

In this paper, we propose a feature transfer framework
based on PCA-SVM for face verification to deal with the
gap of data distribution and training task. Firstly, PCA is
adopted to narrow the gap of data distribution: the model
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TABLE 1. ACCURACY COMPARISONS ON DISTRIBUTION TRANSFER WITH DIFFERENT FEATURE DIMENSIONS (%)

Dimensions 30 50 70 85 100 180 256 Non-tranfer
ModelA 96.87 97.53 98.00 97.80 97.77 97.87 97.90 97.77
ModelB 97.63 98.17 98.27 98.30 98.40 98.30 98.30 98.13

TABLE 3. ACCURACY COMPARISONS WITH THE STATE-OF-THE-ART

METHODS

Methods Average Accuracy (%)
DeepFace - single [9] 95.92
DeepFace - 7models [9] 97.35
WebScale - single [11] 98.00
WebScale - 4models [11] 98.37
DeepID [12] 95.35
DeepID + Joint Bayes [12] 96.05
DeepID2 - single [14] 95.43
DeepID2 - 4models [14] 97.75
WebFace [19] 96.13
WebFace + PCA [19] 96.30
WebFace + Joint Bayes [19] 97.30
WebFace + unrestricted [19] 97.73
VGGFace [25] 97.27
MS UTR [26] 96.95
MMN1 [27] 97.32
MMN2 [27] 98.12

ModelA [20] 97.77
ModelA + PCA (ours) 98.00
ModelA + SVM (ours) 97.79
ModelA + PCA-SVM (ours) 98.10
ModelB [20] 98.13
ModelB + PCA (ours) 98.40
ModelB + SVM (ours) 98.18
ModelB + PCA-SVM (ours) 98.50

is trained on the source dataset (CASIA-WebFace) and is
tested on the target dataset (LFW). The verification accuracy
of PCA based distribution transfer is increased by about
0.3% compared with the original model. Secondly, due to
the difference of source task (face recognition) and target
task (face verification), we introduce an SVM classifier with
nonlinear kernel for task transfer. Finally, the PCA-SVM
framework performs the feature transfer of distribution and
task, which achieves the better validation accuracy than the
existing single-network based algorithms on the LFW.
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