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Abstract. GoDec+ shows its robustness in low-rank matrix decompo-
sition but only deals with single-view data. This paper extends GoDec+
to multi-view data by jointly learning latent space and multi-view fusion
feature. The proposed method factorizes the low-rank matrix in GoDec+
into the product of a basis matrix of the latent space and a shared
representation given by a transformation matrix. By constraining the
basis matrix to be group sparse, the proposed method treats the effects
of different views differently. Extensive experiments show that the pro-
posed method learns a good fusion feature and outperforms the compared
methods in image classification and annotation.
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1 Introduction

In real applications, multi-view data are common since data are usually collected
from different domains or obtained from various feature extrators. For examples,
images of one human face taken in different directions, and shape, texture, and
color properties of one image. Multi-view learning aims to make good use of the
information from different views and is a classic problem in machine learning
[1–3].

Canonical correlation analysis (CCA) is commonly used for multi-view data
analysis [4]. For two observation vectors x1 and x2, CCA finds transformation
matrix B1 and B2 such that the transformed data BT

1 x1 and BT
2 x2 are maximally

correlated. Its probablistic interpretation is that there exists a latent variable z
satisfying x1 = B1z + ε1 and x2 = B2z + ε2, where ε1 and ε1 are Gaussian
noise [5]. It means that CCA intrinsically finds a common latent representation.
Some recent multi-view learning methods also adopt a common latent intrinsic
representation and show great success [6,7].

Low-rank is a good property for capturing the intrinsic representation.
GoDec+ [8] is a robust and fast low-rank approximation method that maxi-
mizing the sum of correntropy of the difference between the original data X
and the low-rank approximation ˜X. Discriminative GoDec+ (D-GoDec+) [9]
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extends GoDec+ for classification by replacing ˜X with a matrix factorization
form BWT X. Since it is easy to add more information for learning by enforcing
constraints on the factor matrices B and W , D-GoDec+ successfully incorpo-
rates label information for classification. Motivated by this, we replace ˜X in
GoDec+ by BWT X and add constraints on B and W for multi-view learning
in this paper. Here B is treated as the view generation matrix (i.e., the basis of
the latent space) and W is treated as the transformation matrix that extracts
the latent intrinsic representation.

Comprehensive experiments on face recognition, digit classification and image
annotation demonstrate the effectiveness of the proposed multi-view learning
method.

2 Problem Formulation

2.1 Brief Review of GoDec+

Given a data matrix X ∈ R
m×n, GoDec+ represents the data by a low-rank

matrix ˜X and the error E modeled by a nonlinear similarity measurement cor-
rentropy [10]. The definition of correntropy is given as C(E) =

∑m
i

∑n
j gσ(Ei,j),

where gσ is Gaussian kernel gσ(x) = exp(−x2/σ2). Maximizing correntropy
is equivalent to minimizing the sum of the Welsch M-estimator, which is
defined as

w(E) =
m

∑

i

n
∑

j

[1 − gσ(Ei,j)]. (1)

The model of GoDec+ is given as

min
˜X

w(X − ˜X), s.t. rank( ˜X) ≤ r, (2)

where ˜X is the low-rank matrix and r is the given rank.

2.2 The Proposed Model

Following [6], group sparsity is enforced on the view generation matrix B to
achieve view specific generation sub-matrices. The proposed model is given as
follows.

min
B,W

w(X − BWT X) + α

V
∑

v=1

‖Bv‖2,1 +
β

2
‖W‖2F , (3)

min
B,W

w(xv
i − BvWT xv

i ) +
α

2
‖B‖2F +

β

2
‖W‖2F , (4)

min
B,W

w(xv
i − Bv(WT

s xi + WT
v xv

i ) +
α

2
‖B‖2F +

β

2
‖Ws‖2F +

γ

2

V
∑

v=1

‖Wv‖2F , (5)
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where B = [B1;B2; · · · ;BV ] with Bi’s are the view-specific generation sub-
matrices, α and β are positive trade-off parameters, ‖ · ‖2,1 denotes �2,1 norm,
and ‖ · ‖F is Frobenius norm. The �2,1 norm is defined as

‖A‖2,1 =
∑

j

√

∑

i

A2
i,j =

∑

j

‖a:,j‖2. (6)

The �2,1 norm encourages group sparsity and the columns of the matrix tend to
be zeroed-out. Thus, each view depends on only a subset of the latent dimen-
sions. By the competitions of the views for data reconstruction, we can learn
view-specific generation sub-matrices. The last term in the objective function is
regularization term for stable solution.

2.3 Optimization

Since half-quadratic (HQ) optimization is a commonly used optimization method
for dealing with correntropy, we give a short review of the main ideas of HQ.
Let φ(v) be a objective function of v that satisfies the preliminary facts [11] of
HQ. Then, we have

φ(v) = min
p

1
2
(v

√
c − p√

c
)2 + ϕ(p). (7)

where c is a constant satisfying that c > 0 and cv2 − φ(v) is convex, p is an
auxiliary variable determined, and ϕ(.) is the dual potential function of φ(.). It
follows that

min
v

φ(v) = min
v,p

1
2
(v

√
c − p√

c
)2 + ϕ(p). (8)

Although the exact formulation of ϕ(p) is often unknown, the minimizer of Eq.
(7) can be determined by a specific function δ(.) only related to φ(.) with the
form

p = δ(v) = cv − φ′(v). (9)

With this solution, minimizing φ(v) can be solved by iteratively optimizing v
and p. When p is given, the sub-problem of minimizing v is a quadratic problem.
This is why this method is called half-quadratic optimization. We refer interested
readers to [11] for more details.

For our specific problem, w(v) is φ(v) in (7). According to (9), the function
δ(·) for the Welsch M-estimator is

δ(v) = cv − 2
σ2

v exp(− v2

σ2
). (10)

In this case, c = 2
σ2 . Define α1 = α/c, β1 = β/c and X̂ = X − T

c , problem (5)
changes into

min
B,W,T

1
2
‖X̂ − BWT X‖2F +

ϕs(T )
c

+ α1

V
∑

i=1

‖Bi‖2,1 +
β1

2
‖W‖2F , (11)
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where Ti is the auxiliary variable introduced by HQ and ϕs(T ) is defined as
ϕs(T ) =

∑

i,j

ϕ(Ti,j). When the other variables are given, it is easy to obtain T

by

T = cE − 2
σ2

E ◦ gσ(E), (12)

where ◦ denotes the Hadamard product and E = X − BWT X. Thus, problem
(5) can be solved by alternately optimizing the variables.

In order to deal with the term BWT X, the inexact augmented Lagrange
multiplier (ALM) method [12] is adopted. Auxiliary variables D and K are
introduced and the problem (11) changes into

min
B,W,T
D,K

1
2
‖X̂ − BK‖2F +

ϕs(T )
c

+ α1

V
∑

i=1

‖Di‖2,1 +
β1

2
‖W‖2F ,

s.t. B = D, WT X = K.

The augmented Lagrange function of this new optimization problem is

L(B,W, T,D,K, Y1, Y2, μ)

=
c

2
‖X − BK − T

1
‖2F +

ϕs(T )
c

+ α1

V
∑

i=1

‖Di‖2,1 +
β1

2
‖W‖2F

+ 〈Y1, B − D〉 +
μ

2
‖B − D‖2F + 〈Y2,W

T X − K〉

+
μ

2
‖WT X − K‖2F ,

where Y1 and Y2 are the Lagrange multipliers and μ is a positive scalar. When
the other variables are fixed, the solutions of B,W,K are given as

B = (X̂KT + μ(D − 1
μ

Y2))(KKT + μI)−1, (13)

W = (μXXT + β1I)−1(μX(K − 1
μ

Y )T ), (14)

and
K = (BT B + μI)−1(BT X̂ + μWT X + Y1). (15)

When the other variables are fixed, the minimization of L with respect to Di is
to solve the following problem

α2‖Di‖2,1 +
1
2
‖Bi − Di +

1
μ

Y1,i‖2F , (16)

where α2 = α1/μ. Define Qi = Bi + 1
μY1,i‖2F . Following [13], the jth column of

the optimal solution is given by

[Di]:,j =

{ ‖[Qi]:,j‖2−α2
‖[Qi]:,j‖2

[Qi]:,j , if ‖[Qi]:,j‖2 > α2;
0, otherwise.

(17)

Y1, Y2 and μ are updated following [12]. Algorithm 1 summarizes the solution to
problem (5).
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Algorithm 1. The proposed multi-view learning method
Input: X ∈ R

m×n, r, σ, α, β, ρ, μ0, μmax

Output: B, W
1: Initialize Y1 = 0, Y2 = 0, E = 0, k = 0.
2: Generate standard Gaussian matrix B, W ∈ R

m×n.
3: Compute D = B and K = WTX.
4: while not converged do
5: Update W as (14);
6: for i = 1 to v do
7: Update Di as (17);
8: end for
9: Update K, B and E as (15), (13), and (12).

10: Update the Lagrange multipliers as follows:
Y1,k+1 = Y1,k + μk(B − D)
Y2,k+1 = Y2,k + μk(W

TX − K)
11: Update μ as follows: μk+1 = min(μmax, ρμk).
12: Update k : k ← k + 1.
13: end while

3 Experiments

Here we conduct experiments on several popular datasets to verify the effec-
tiveness of the proposed method. It is compared with multi-view intact space
learning (MISL) [7], multi-view embedding (MSE) [14], and GoDec+ [8]. For
GoDec+, the fusion feature is obtained by projecting the concatenated multi-
view data onto the column space of the low-rank matrix learned by GoDec+.
The data of each view are rescaled to range in [0,1]. The parameters are tuned
for optimal performance and all the experiments are repeated for ten times.

3.1 Face Recognition

The CMU PIE face images dataset [15] contains 68 individuals under 13 dif-
ferent poses, 42 illumination and four expressions. We select two near frontal
poses (C9 and C29) as two views to construct the multi-view setting. Each
image is reshaped to 32 × 32. K-nearest neighbor (KNN) method based on the
Euclidean distance is used for face recognition. We randomly select 50 percent
of one individual for training and the rest for test. To study the effectiveness of
multi-view learning, experiments results with various combinations are summa-
rized in Table 1. Here C9 and C29 mean using single view, and C9 + C29 means
multi-view learning. All methods achieve improvement when combining the two
views and the proposed method is the best. The recognition rate is illustrated
in Fig. 2 with varying dimension. Even the worst case of the proposed method is
better than the best cases of the other methods. The convergence of the variables
and the objective value of the proposed method is shown in Fig. 1, which shows
that Algorithm 1 converges quite well.
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Table 1. Face recognition rate (%) on CMU PIE

Views C9 C29 C9+ C29

MISL 72.62 72.95 75.75

MSE 79.57 78.49 80.16

GoDec+ 70.38 72.50 74.42

Model1 86.03 84.36 88.65

Iteration

6.22295

6.223

6.22305

6.2231

6.22315

6.2232

6.22325

Lo
g 

of
 O

bj
ec

tiv
e 

Va
lu

e

(a) Objective Value

0 100 200 300 400 500 0 100 200 300 400 500
Iteration

-15

-10

-5

0

5

Lo
g 

of
 R

el
at

iv
e 

Er
ro

r

B
W

(b) Relative Errors

Fig. 1. Convergence plot of the proposed method on CMU PIE
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Fig. 2. Recognition rate on CMU PIE with varying dimension
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3.2 Digit Classification

The multiple features (MFeat) dataset [16] is a handwritten numeral dataset
with 10 categories (i.e., “0–9”) and 200 samples per category. The samples are
represented by six kinds of features and the total dimensions of all the features
are 649. For each category, 20% of the data are selected for training and the
rest for testing. The classification accuracy is reported in Table 2. The proposed
method outperforms the other compared method. The confusion matrix of the
proposed method is given in Fig. 3. It shows that most categories are classified
with high accuracy.

Table 2. Digit classification accuracy (%)

Methods Accuracy Methods Accuracy

MISL 92.67 GoDec+ 93.78

MSE 85.01 Model1 93.83
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Fig. 4. AP scores of different algorithms for Pascal VOC’07

3.3 Image Annotation

The Pascal VOC’07 dataset [17] contains 9963 images of 20 classes. To sim-
ulate a multi-view setting, we choose four types of features including 1000-
dimensional “DenseSift”, 512-dimensional “Gist”, 100-dimensional “DenseHue”
and 804-dimensional “Tag” from [18]. Following common setting [17], the images
are spited into a training set of 5,011 images and a test set of 4,952 images.
A support vector machine (SVM) classifier is trained for the fusion feature of
each class. We utilize average precision (AP) for evaluating the performance for
each class and mean AP (mAP) for all classes [19]. The AP scores of different
algorithms are illustrated in Fig. 4. Table 3 shows the mAP scores. The proposed
method performs significantly better than the other methods.

Table 3. Performance on Pascal VOC’07

Methods mAP Methods mAP

MISL 51.19 GoDec+ 52.97

MSE 53.94 Model1 55.76

4 Conclusion and Future Work

Based on correntropy and matrix factorization, this paper extends GoDec+ to
multi-view learning that jointly learns latent space and multi-view fusion feature.
Experiment results show that the proposed method is efficient and provides a
good feature fusion method in practice. We will extend this method with kernel
function in the future.
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