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Abstract. Methods based on convolutional neural network (CNN) have
demonstrated tremendous improvements on single image super-resolution.
However, the previous methods mainly restore images from one single
area in the low resolution (LR) input, which limits the flexibility of
models to infer various scales of details for high resolution (HR) out-
put. Moreover, most of them train a specific model for each up-scale
factor. In this paper, we propose a multi-scale super resolution (MSSR)
network. Our network consists of multi-scale paths to make the HR in-
ference, which can learn to synthesize features from different scales. This
property helps reconstruct various kinds of regions in HR images. In
addition, only one single model is needed for multiple up-scale factors,
which is more efficient without loss of restoration quality. Experiments
on four public datasets demonstrate that the proposed method achieved
state-of-the-art performance with fast speed.
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1 Introduction

The task of single image super-resolution aims at restoring a high-resolution
(HR) image from a given low-resolution (LR) one. Super-resolution has wide
applications in many fields where image details are on demand, such as medi-
cal, remote sensing imaging, video surveillance, and entertainment. In the past
decades, super-resolution has attracted much attention from computer vision
communities. Early methods include bicubic interpolation [5], Lanczos resam-
pling [9], statistical priors [15], neighbor embedding [4], and sparse coding [23].
However, super-resolution is highly ill-posed since the process from HR to LR
contains non-invertible operation such as low-pass filtering and subsampling.

Deep convolutional neural networks (CNNs) have achieved state-of-the-art
performance in computer vision, such as image classification [20], object detec-
tion [10], and image enhancement [3]. Recently, CNNs are widely used to address
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the ill-posed inverse problem of super-resolution, and have demonstrated supe-
riority over traditional methods [9,15,4,23] with respect to both reconstruction
accuracy and computational efficiency. Dong et al. [6,7] successfully design a
super-resolution convolutional neural network (SRCNN) to demonstrate that a
CNN can be applied to learn the mapping from LR to HR in an end-to-end
manner. A fast super-resolution convolutional neural network (FSRCNN) [8] is
proposed to accelerate the speed of SRCNN [6,7], which takes the original LR
image as input and adopts a deconvolution layer to replace the bicubic interpo-
lation. In [19], an efficient sub-pixel convolution layer is introduced to achieve
real time performance. Kim et al. [14] uses a very deep super-resolution (VDSR)
network with 20 convolutional layers, which greatly improves the accuracy of
the model.

The previous methods based on CNN has achieved great progress on the
restoration quality as well as efficiency. However, there are some limitations
mainly coming from the following aspects:

– CNN based methods make efforts to enlarge the receptive field of the models
as well as stack more layers. They reconstruct any type of contents from
LR images using only single-scale region, thus ignore the various scales of
different details. For instance, restoring the detail in the sky probably relies
on a lager image region, while the tiny text may only be relevant to a small
patch.

– Most previous approaches learn a specific model for one single up-scale fac-
tor. Therefore, the model learned for one up-scale factor cannot work well
for another. That is, many scale-specific models should be trained for differ-
ent up-scale factors, which is inefficient both in terms of time and memory.
Though [14] trains a model for multiple up-scales, it ignores the fact that
a single receptive field may contain different information amount in various
resolution versions.

In this paper, we propose a multi-scale super resolution (MSSR) convolu-
tional neural network to issue these problems – there are two folds of meaning in
the term multi-scale. First, the proposed network combines multi-path subnet-
works with different depth, which correspond to multi-scale regions in the input
image. Second, the multi-scale network is capable to select a proper receptive
field for different up-scales to restore the HR image. Only single model is trained
for multiple up-scale factors by multi-scale training.

2 Mutli-scale Super-Resolution

Given a low-resolution image, super-resolution aims at restoring its high-resolution
version. For this ill-posed recovery problem, it is probably an effective way to es-
timate a target pixel by taking into account more context information in the
neighborhood. In [6,7,14], authors found that larger receptive field tends to
achieve better performance due to richer structural information. However, we
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argue that the restoration process is not only depending on single-scale regions
with large receptive field.

Different kinds of components in an image may be relevant to different scales
of neighbourhood. In [26], multi-scale neighborhood has been proven effective
for super-resolution, which simultaneously integrates local and non-local sparse
priors. Multi-scale feature extraction [3,24] is also effective to represent image
patterns. For example, the inception architecture in GoogLeNet [21] uses par-
allel convolutions with varying filter sizes, and better addresses the issue of
aligning objects in input images, resulting in state-of-the-art performance in ob-
ject recognition. Motivated by this, we propose a multi-scale super-resolution
convolutional neural network to improve the performance (see as Fig. 1): low-
resolution image is first up-sampled to the desired size by bicubic interpolation,
and then MSSR is implemented to predict the detail.

Fig. 1. The network architecture of MSSR. We cascade convolutional layers and nonlin-
ear layers (ReLU) repeatedly. An interpolated low-resolution image goes through MSSR
and transforms into a high-resolution image. MSSR consists of two convolution mod-
ules (Module-L and Module-S), streams of three different scales (Small/Middle/Large-
Scale), and a reconstruction module with residual learning.

2.1 Multi-Scale Architecture

With fixed filter size larger than 1, the receptive field is going larger when net-
work stacks more layers. The proposed architecture is composed of two parallel
paths as illustrated in Fig. 1. The upper path (Module-L) stacks NL convolu-
tional layers which is able to catch a large region of information in the LR image.
The other path (Module-S) contains NS (NS < NL) convolutional layers to en-
sure a relatively small receptive filed. The response of the k-th convolutional
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layer in Module-L/S for input hk is given by

hk+1 = fk+1
(
hk
)

= σ
(
W k+1 ∗ hk + bk+1

)
, (1)

where W k+1 and bk+1 are the weights and bias respectively, and σ (·) represents
nonlinear operation (ReLU). Here we denote the interpolated low-resolution im-
age as x. The output of Module-L is HL(x) = fNL(fNL−1(...f1(x))), and the
output of Module-S is HS(x) = fNS (fNS−1(...f1(x))).

For saving consideration, parameters between Module-S and the front part of
Module-L are shared. Outputs of the two modules are fused into one, which can
take various functional forms (e.g. connection, weighting, and summation). We
find that simply summation is efficient enough for our purpose, and the fusion
result is generated as Hf (x) = HL(x)+HS(x). To further vary the spatial scales
of the ensemble architecture, a similar subnetwork is cascaded to the previous
one as F (x) = Hf (Hf (x)). A final reconstruction module with Nr convolutional
layers is employed to make the prediction. Following [20], size of all convolutional
kernels is set to 3× 3 with zero-padding. With respect to the local information
involved in LR image, there are streams of three scales (Small/Middle/Large-
Scale) corresponding to 2× (NS +NS +Nr) + 1, 2× (NS +NL +Nr) + 1 and
2 × (NL + NL + Nr) + 1, respectively. Each layer consists of 64 filters except
for the last reconstruction layer, which contains only one single filter without
nonlinear operation.

2.2 Multi-Scale Residual Learning

High-frequency content is more important for HR restoration, such as gradient
features taken into account in [1,2,4]. Since the input is highly similar to the
output in super-resolution problem, the proposed network (MSSR) focuses on
high-frequency details estimation through multi-scale residual learning.

The given training set {x(i)s , y(i)}{N,S}
{i,s}={1,1} includes N pairs of multi-scale

LR images x
(i)
s with S scale factors and HR image y(i). Multi-scale residual

image for each sample is computed as r
(i)
s = y(i) − x(i)s . The goal of MSSR is

to learn the nonlinear mapping F (x) from multi-scale LR images x
(i)
s to predict

the residual image r
(i)
s . The network parameters Θ =

{
W k, bk

}
are achieved

through minimizing the loss function as

L (Θ) =
1

2NS

N∑
i=1

S∑
s=1

∥∥∥r(i)s − F
(
x
(i)
s ;Θ

)∥∥∥2
=

1

2NS

N∑
i=1

S∑
s=1

∥∥∥y(i) − (x(i)s + F
(
x
(i)
s ;Θ

))∥∥∥2 (2)

With multi-scale residual learning, we only train a general model for multiple

up-scale factors. For LR images x
(i)
s with different down sampling scales s, even

the same region size in LR images may contain different information content.
In the work of Dong et al. [8], a small patch in LR space could cover almost all
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information of a large patch in HR. For multiple up-scale samples, a model with
only one single receptive field cannot make the best of them all simultaneously.
However, our multi-scale network is capable of handling this problem. The ad-
vantages of multi-scale learning include not only memory and time saving, but
also a way to adapt the model for different down sampling scales.

3 Experiments

3.1 Datasets

Training dataset. The model is trained on 91 images from Yang et al. [23]
and 200 images from the training set of Berkeley Segmentation Dataset (BSD)
[17], which are widely used for super-resolution problem [7,14,8,18]. As in [8],
to make full use of the training data, we apply data augmentation in two ways:
1) Rotate the images with the degree of 90◦, 180◦ and 270◦. 2) Downscale the
images with the factor of 0.9, 0.8, 0.7 and 0.6. Following the sample cropping
in [14], training images are cropped into sub-images of size 41 × 41 with non-
overlapping. In addition, to train a general model for multiple up-scale factors,
we combine LR-HR pairs of three up-scale size (×2,×3,×4) into one.

Test dataset. The proposed method is evaluated on four publicly available
benchmark datasets: Set5 [1] and Set14 [25] provide 5 and 14 images respectively;
B100 [17] contains 100 natural images collected from BSD; Urban100 [12] consists
of 100 high-resolution images rich of structures in real-world. Following previous
works [12,8,14], we transform the images to YCbCr color space and only apply
the algorithm on the luminance channel, since human vision is more sensitive to
details in intensity than in color.

3.2 Experimental Settings

In the experiments, the Caffe [13] package is implemented to train the proposed
MSSR with Adam [16]. To ensure varying receptive field scales, we set NL = 9,
NS = 2 and Nr = 2 respectively. That is, each Module-L in Fig. 1 stacks 9
convolutional layers, while Module-S stacks 2 layers. The reconstruction module
is built of 2 layers. Thus, the longest path in the network consists of 20 convolu-
tional layers totally, and there are streams of three different scales corresponding
to 13, 27 and 41. Model weights are initialized according to the approach de-
scribed in [11]. Learning rate is initially set to 10−4 and decreases by the factor
of 10 after 80 epochs. Training phase stops at 100 epochs. We set the parameters
of batch-size, momentum and weight decay to 64, 0.9 and 10−4 respectively.

3.3 Results

To quantitatively assess the proposed model, MSSR is evaluated for three differ-
ent up-scale factors from 2 to 4 on four testing datasets aforementioned. We com-
pute the Peak Signal-to-Noise Ratio (PSNR) and structural similarity (SSIM)
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of the results to compare with some recent competitive methods, including A+
[22], SelfEx [12], SRCNN [7], FSRCNN [8] and VDSR [14]. As shown in Table
1, we can see that the proposed MSSR outperforms other methods almost on
every up-scale factor and each test set. The only suboptimal result is the PSNR
on B100 of up-scale factor 4, which is slightly lower than VDSR [14], but still
competitive with a higher SSIM. Visual comparisons can be found in Fig. 2 and
Fig. 3.

Original SelfEx [12] SRCNN [7] FSRCNN [8] VDSR [14] MSSR
PSNR/SSIM 25.69/0.7940 25.48/0.7712 25.63/0.7815 26.58/0.8285 27.01/0.8391

Fig. 2. Super-resolution results of img099 (Urban100) with scale factor x3. Line is
straightened and sharpened in MSSR, whereas the other methods give blurry or dis-
torted lines.

Original SelfEx [12] SRCNN [7] FSRCNN [8] VDSR [14] MSSR
PSNR/SSIM 27.08/0.9481 27.04/0.9393 27.11/0.9417 27.86/0.9616 28.48/0.9674

Fig. 3. Super-resolution results of ppt3 (Set14) with scale factor x3. Texts in MSSR
are sharp and legible, while character edges are blurry in the other methods.

As for effectiveness, we evaluate the execution time using the public code
of state-of-the-art methods. The experiments are conducted with an Intel CPU
(Xeon E5-2620, 2.1 GHz) and an NVIDIA GPU (GeForce GTX 1080). Fig.
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4 shows the PSNR performance of several state-of-the-art methods for super-
resolution versus the execution time. The proposed MSSR network achieves bet-
ter super-resolution quality than existing methods, and are tens of times faster.

Table 1. Average PSNR/SSIM for scale factors x2, x3 and x4 on datasets Set5 [1],
Set14 [25], B100 [17] and Urban100 [12]. Red color indicates the best performance and
blue color indicates the second best performance. 1

Dataset Scale A+ [22] SelfEx [12] SRCNN [7] FSRCNN [8] VDSR [14] MSSR

Set5
x2 36.54/0.9544 36.49/0.9537 36.66/0.9542 37.00/0.9558 37.53/0.9587 37.62/0.9592
x3 32.58/0.9088 32.58/0.9093 32.75/0.9090 33.16/0.9140 33.66/0.9213 33.82/0.9226
x4 30.28/0.8603 30.31/0.8619 30.49/0.8628 30.71/0.8657 31.35/0.8838 31.42/0.8849

Set14
x2 32.28/0.9056 32.22/0.9034 32.45/0.9067 32.63/0.9088 33.03/0.9124 33.11/0.9133
x3 29.13/0.8188 29.16/0.8196 29.30/0.8215 29.43/0.8242 29.77/0.8314 29.86/0.8332
x4 27.32/0.7491 27.40/0.7518 27.50/0.7513 27.59/0.7535 28.01/0.7674 28.05/0.7686

B100
x2 31.21/0.8863 31.18/0.8855 31.36/0.8879 31.50/0.8906 31.90/0.8960 31.94/0.8966
x3 28.29/0.7835 28.29/0.7840 28.41/0.7863 28.52/0.7893 28.82/0.7976 28.85/0.7985
x4 26.82/0.7087 26.84/0.7106 26.90/0.7103 26.96/0.7128 27.29/0.7251 27.28/0.7256

Urban100
x2 29.20/0.8938 29.54/0.8967 29.51/0.8946 29.85/0.9009 30.76/0.9140 30.84/0.9149
x3 26.03/0.7973 26.44/0.8088 26.24/0.7991 26.42/0.8064 27.14/0.8279 27.20/0.8295
x4 24.32/0.7183 24.79/0.7374 24.52/0.7226 24.60/0.7258 25.18/0.7524 25.19/0.7535

Fig. 4. Our MSSR achieves more accurate and efficient results for scale factor x3 on
dataset Set5 in comparison to the state-of-the-art methods.

1 All the output images are cropped to the same size as SRCNN [7] for fair compar-
isons.
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4 Conclusion

In this paper, we highlight the importance of scales in super-resolution problem,
which is neglected in the previous work. Instead of simply enlarge the size of
input patches, we proposed a multi-scale convolutional neural network for single
image super-resolution. Combining paths of different scales enables the model
to synthesize a wider range of receptive fields. Since different components in
images may be relevant to a diversity of neighbor sizes, the proposed network
can benefit from multi-scale features. Our model generalizes well across different
up-scale factors. Experimental results reveal that our approach can achieve state-
of-the-art results on standard benchmarks with a relatively high speed.
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