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Abstract—Visual tracking is a challenging problem in com-
puter vision. Most state-of-the-art visual trackers either rely on
intensity information, texture information, or use simple color
representations for image description, which cannot provide all-
around invariance to different scene conditions. Meanwhile there
exists no single tracking approach that can successfully handle
all scenarios. Due to the complexity of the tracking problem,
the combination of multiple features should be computationally
efficient and possess a certain amount of robustness while
maintaining high discriminative power. This paper combine
intensity information (cross-bin distribute field, CDF), texture
information (enhance histograms of oriented gradients, EHOG)
and color information (color name, CN) in a tracking-by-
detection framework, in which a simple tracker called CSK is
extended for multi-dimension and multi-cue fusion. The proposed
approach improves the baseline single-cue tracker by 4.4% in
distance precision. Furthermore,we show that our approach
achieving 75.4% is better than most recent state-of-the-art
tracking algorithms.

Index Terms—multi-invariance; object tracking

I. INTRODUCTION

Object tracking is one of the most challenging problems
in computer vision. It plays a vital role in different kinds
applications, especially for human-computer interaction, video
surveillance and robotics. The performance of a tracking
algorithm is affected by illumination variation, occlusion,
background clutters, etc. Object tracking has achieved signif-
icant progress recently, but it is still a challenging problem.
Recent tracking framework can be split into two main modules
generally: appearance model and tracking model. We review
target appearance representation schemes in recent state-of-
the-art tracking frameworks.

Object representation is one of the major components in
any visual tracker and numerous schemes have been pre-
sented. According to previous researches, most state-of-the-
art trackers depend on intensity information [1], [2]. Holistic
templates based on raw intensity values have been extensively
used for tracking since Lucas and Kanade’s work [3]. Later,
intensity histogram [4] is used to model the object appearance,
which describes integrate information over a large patch of the
target. However, the loss of spatial information when building
the histogram makes it sensitive to noise. Multi-kernel [5] or
multi-patch [6] descriptors including some spatial information
are proposed to address this problem. The fragment-based
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tracker [7] splits the target into multiple regions and describes
them using multiple local histograms, increasing the time and
computation even the use of integral histograms [8]. In order
to balance a pair of contradictions between the specificity
of the descriptor and the landscape smoothness criterion,
a distribution field descriptor [9] is proposed as a novel
intensity appearance model. A The appearance of an object
changes drastically when illumination varies significantly. S-
ince intensity histogram features is easily affected by lights,
numerous tracking frameworks based on illumination-invariant
features have been proposed. Previous researches on tracking
describe objects with contours [10] when satisfy the brightness
constancy assumption. Many other texture features are utilized
to model object appearance for tracking, such as histograms
of oriented gradients (HOG) [11], covariance region descriptor
[12], local binary patterns (LBP) [13] and Haar-like features
[14]. Considering local directional edge information, Tang
et al. [11] adopts HOG with the integral histogram [8] for
tracking. Lately, online subspace models have been used for
object tracking in dealing with large lighting variation [15],
[16].

In addition, color feature has gained more attention since
it contains abundant information. Color videos become more
and more popular in computer vision. Therefore, tracking
algorithms based on color appearance model have much
progress recently [17], [18]. Color-histogram-based mean-
shift algorithm is used for tracking [1]. Color Name (CN)
[19] uses many color attributes and proposes an adaptive
dimensionality reduction technique for tracking. However, the
use of color leads to the algorithm unstable to similarly colored
backgrounds and low saturation objects.

Most algorithms only use an individual cue and cannot
provide all-around invariance to different scene conditions.
Meanwhile, there exists no single tracking approach that can
successfully handle all scenarios. So it’s appealing to integrate
multiple cues into one observation model for tracking. Many
researchers focus on employing probabilistic approaches to
model interactions among multiple cues, such as Dynamic
Bayesian Network[20], Monte Carlo method[12], and Particle
Filters[21]. However the use of Bayesian framework makes
them difficult to be used in deterministic tracking methods.
Recently, tracking associated with detection has become pop-
ular because detection responses could help to locate object
exactly and alleviate drift [22], [23], [24]. Breitenstein et al.
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Fig. 1. Multi-invariance Appearance Model for Object Tracking

[23] integrates detector into tracker by monitoring continuous
detection confidence in particle filtering framework. Through
online-trained classifier, prior knowledge is introduced and
reliable detections are associated in the end. Xing et al. [24]
collects detection responses in a temporal sliding window and
associates them with potential tracklets.

Most multi-cue tracking algorithms cannot choose the most
effective feature in different application environments. Consid-
ering this problem, we combine three different features includ-
ing intensity, texture and color information to obtain the advan-
tages of different features in diverse scenarios. In addition, di-
rect integration of the three features in particle filter framework
leads to low accuracy and unsatisfying real-time performance.
In this paper, we extend CSK[25] for multi-dimension and
multi-cue fusion. In extended CSK framework, we fuse multi-
ple features in response layer to attain a compact system and
get an effective multi-cue tracking algorithm. Finally, based
on the evaluation of online tracking benchmark[26], we show
that our tracker combined with multi-invariance appearance
model and extended CSK achieves outstanding performance
in a comprehensive evaluation over 35 color image sequences.

II. MULTI-INVARIANCE APPEARANCE MODEL

In this paper, a multi-invariance appearance model is pro-
posed for visual object tracking showed as Fig. 1. Firstly,
a cross-bin distribution field (CDF) feature describes the
intensity properties. Then an enhance histograms of oriented
gradients (EHOG) is used to model texture variety. Moreover,
a color name (CN) method extracting color attribute keeps
color invariance. In the end, a CSK tracker extended multi-
cue combines multi-invariance appearance model.

A. Intensity: Cross-bin Distribution Field

In this paper, we employ cross-bin distribution field (CDF)
to describe the intensity properties of objects. A distribution
field (DF) [9] is simply an array of probability distributions,
which is a matrix with 3 dimensions including the width, the
height of the image, and the gray intensity feature space. In
gray intensity space, an image of size 𝑤 ∗ ℎ yields a 3D
distribution field of size 𝑤 ∗ℎ ∗ 𝑏, 𝑏 is the number of intensity
feature bins.

∙ Divide the original intensity 𝐼 (𝑚,𝑛) into different dis-
tribution filed with respect to feature layers.

𝐹𝑑𝑓 (𝑚,𝑛, 𝑘) =

{
1, 𝑖𝑓 𝐼 (𝑚,𝑛) ∈ 𝐷𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

,where 𝑚 and 𝑛 represent the row and column of the
intensity image, and 𝐷𝑘 = [255𝑘/𝑏, 255 (𝑘 + 1)/𝑏) , 𝑘 ∈
{0, 2, ..., 𝑏− 1} represents the 𝑘-th bin’s intensity region.

∙ It is widely accepted that cross-bin metrics are generally
more suitable for measuring histogram similarity. Here a
cross-bin metric is a concatenation of histogram smooth-
ing to content in each bin depends on multiple bins [27].

𝐹𝑐𝑑𝑓 (𝑚,𝑛, 𝑘) = 𝐹𝑑𝑓 (𝑚,𝑛, 𝑘) ∗ ℎ𝜎𝑠
∗ ℎ𝜎𝑘

(2)

,where ℎ𝜎𝑠
is a spatial space Gaussian kernel of standard

deviation 𝜎𝑠, ℎ𝜎𝑘
is a 1D Gaussian kernel of standard

deviation 𝜎𝑘 over feature space, and ∗ is the convolution
operator.

B. Texture: Enhance Histograms of Oriented Gradients

Histograms of oriented gradients (HOG) [28] is a classical
texture descriptor, which is widely applied to object detection,
action recognition, visual tracking. In this paper, an enhance
histograms of oriented gradients (EHOG) proposed by [29] is
used to model texture variety. Using finite difference filters
[−1, 0,+1] and its transpose, orientations 𝜃 (𝑚,𝑛) and mag-
nitudes 𝛼 (𝑚,𝑛) of the intensity gradient at a pixel (𝑚,𝑛) is
computed. The gradient orientation 𝜃 (𝑚,𝑛) is discretized into
one of the values 𝐵 using either a contrast sensitive (𝐵1)or
insensitive (𝐵2), where (𝑝+ 𝑞) is the number of orientation
bin.

𝐵1 (𝑚,𝑛) = round
(

𝑝𝜃(𝑚,𝑛)
2𝜋

)
mod 𝑝

𝐵2 (𝑚,𝑛) = 𝑝+ round
(

𝑞𝜃(𝑚,𝑛)
𝜋

)
mod 𝑞

(3)

Then, a feature map specifies a sparse histogram of gradient
magnitudes at each 2 × 2 dense grid of rectangular cell. Let
𝑘 ∈ {0, 1, . . . , 𝑝+ 𝑞 − 1} range over orientation bins, and the
cell feature map at (𝑚,𝑛) is

𝐹ℎ𝑜𝑔 (𝑚,𝑛, 𝑘) =

{
𝛼 (𝑚,𝑛) , 𝑖𝑓 𝑘 = 𝐵 (𝑚,𝑛)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

Gradient invariance can be achieved via normalization [28]
using 𝐹𝑛ℎ𝑜𝑔 (𝑚,𝑛, 𝑘) = 𝐹ℎ𝑜𝑔 (𝑚,𝑛, 𝑘) /𝑁𝛿𝑥,𝛿𝑦 (𝑚,𝑛, 𝑘) by
four different factors 𝑁𝛿𝑥,𝛿𝑦 (𝑚,𝑛, 𝑘) , 𝛿𝑥, 𝛿𝑦 ∈ {+1,−1} .

𝑁𝛿𝑥,𝛿𝑦 (𝑚,𝑛) = (𝐹 2
ℎ𝑜𝑔 (𝑚,𝑛) + 𝐹

2
ℎ𝑜𝑔 (𝑚+ 𝛿𝑥, 𝑛+ 𝛿𝑦)

+𝐹 2
ℎ𝑜𝑔 (𝑚+ 𝛿𝑥, 𝑛) + 𝐹

2
ℎ𝑜𝑔 (𝑚,𝑛+ 𝛿𝑦))

0.5

(5)
In this paper, the cell-based feature map 𝐹ℎ𝑜𝑔 is nine contrast
insensitive orientations (𝑝 = 9) and 18 contrast sensitive
orientations (𝑞 = 18). Therefore, four normalization factors
for each cell obtain 4∗ (9 + 18) = 108 normalize dimensional
map 𝐹𝑛ℎ𝑜𝑔. According to [29], an analytic projection of these
108-dimensional vectors is defined by 27 sums over different
normalizations (one for each orientation channel) , and 4 sums
over the 27 contrast insensitive/sensitive orientations(one for
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each normalization factor) . The final feature map 𝐹𝑒ℎ𝑜𝑔 has
31-dimensional vectors, including 27 dimensions correspond-
ing to different orientation channels (9 contrast insensitive and
18 contrast sensitive) and 4 dimensions capturing the overall
gradient energy.

C. Color: Color Name

The selection of color feature is vital for the performance of
a visual tracker. Inspired by recent progress in tracking based
on color [19], rather than use the simple color histogram, we
employ many color features to describe objects. Color names
(CN) [30] are linguistic color labels assigned by humans to
represent colors in the real world, including eleven basic color:
black, brown, green, pink, red, yellow, blue, grey, orange,
purple and white. However, RGB color using in computer
vision usually can be mapped to a probabilistic 11 dimensional
color attributes by the mapping matrix, which is automatically
learned from images retrieved with Google-image search.
Therefore, color name probabilities can be describe by (6).

𝐹𝑐𝑛 (𝑚,𝑛, 𝑘) =𝑀𝑎𝑝 (𝑅 (𝑚,𝑛) , 𝐺 (𝑚,𝑛) , 𝐵 (𝑚,𝑛) , 𝑘)
(6)

, where 𝑅 (𝑚,𝑛), 𝐺 (𝑚,𝑛), 𝐵 (𝑚,𝑛) corresponding to RGB
color value of images, and 𝑀𝑎𝑝 indicates a mapping matrix
from RGB to 11 dimensional color probabilities.

D. Multi-invariance Tracking Model based on CSK

We apply our multi-invariance appearance model on a sim-
ple tracker called CSK[9], which provides the highest speed
among the top ten trackers in the recent benchmark [25]. In
this paper, CSK is extended for multi-dimension and multi-cue
fusion. Considered tracking as a pixel classification problem to
distract foreground and background. Each pixel considered to
be the probability of foreground or background is determined
by all the cues. Every cue has a saliency map. We combine all
the saliency maps to get final tracking result.The original CSK
tracker optimize a kernelized least squares classifier of a target
from a single dimensional gray-image patch. The CSK tracker
exploits the circulant structure to realize dense sampling that
appears from the periodic assumption of the local patch, and
employs Fast Fourier Transform (FFT) to speed up. Here we
provide a brief overview of CSK tracker and extend it for
multi-invariance appearance model.

A multi-invariance appearance model 𝑥 (𝑚,𝑛) = 𝐹𝑓 (𝑚,𝑛)
around the target’s center (𝑚𝑜, 𝑛𝑜) is used to train CSK clas-
sifier. 𝐹𝑓 (𝑚, 𝑦) is labelled with a Gaussian function 𝑦(𝑚,𝑛).
The classifier is trained by minimizing the cost function over
𝑤.

𝜀 =
∑
𝑚,𝑛

∣⟨𝜙 (𝑥 (𝑚,𝑛)) , 𝜙 (𝜔)⟩ − 𝑦 (𝑚,𝑛)∣2+𝜆 ⟨𝜙 (𝜔) , 𝜙 (𝜔)⟩
(7)

Here the constant 𝜆 > 0 is a regularization parameter, and
𝜙 is the mapping to the Hilbert space induced by the kernel
𝜅, defining the inner product as ⟨𝜙 (𝑥1) , 𝜙 (𝑥2)⟩ = 𝜅 (𝑥1, 𝑥2).

For the sake of multi-dimension extension, multi-channel
correlation filters[31] is used for allowing multiple dimension

𝑘 feature by summing over them in the Fourier domain with
Gaussian kernel (variance 𝜎) as (8).

𝒦 (ℱ (𝑥1) ,ℱ (𝑥2)) = ℱ (𝜅 (𝑥1, 𝑥2))

= ℱ
(
exp

(
−∥𝑥1∥2+∥𝑥2∥2−2ℱ−1(

∑
𝑘
ℱ(𝑥1(⋅,𝑘))ℱ(𝑥2(⋅,𝑘)))

𝜎2

))

(8)
Then, the cost function in (7) is minimized by 𝜔, where the
coefficients 𝜔 are

𝐴 = ℱ (𝜙 (𝜔)) =
ℱ (𝑦 (𝑚,𝑛))

𝒦 (ℱ (𝑥1) ,ℱ (𝑥2)) + 𝜆
(9)

In addition, the weighted superposition of different cues re-
spond maps applies to multi-cue fusion shown as (10).

𝑟 =
∑

𝑓
𝑤𝑓𝑟𝑓 =

∑
𝑓
𝑤𝑓ℱ−1 (𝐴𝑓𝒦 (ℱ (𝐹𝑓 ) ,𝑀𝑓 )) (10)

,where 𝐹𝑓 is the appearance feature , 𝑀𝑓 is the frequency
domain model and 𝑤𝑓 is the multi-cue weight. Based on
the CSK framework, the multi-invariance tracker extending
CSK for multi-dimension and multi-cue can be summarized
in Algorithm 1.

Algorithm 1 Multi-invariance Tracker based on CSK
Input: Multi-feature 𝐹𝑓 , 𝑓 ∈ {𝑐𝑑𝑓, 𝑒ℎ𝑜𝑔, 𝑐𝑛}
Output: Tracking result (𝑚̂, 𝑛̂)

1: Set 𝑌 = ℱ
(
exp

(
− 1

2𝜎2
𝑠

(
(𝑚−𝑚𝑜)

2
+ (𝑛− 𝑛𝑜)2

)))
2: for 𝑡 = 1, 2, . . . do
3: Multi-dimension extension:

𝐾𝑡
𝑓 = 𝒦

(
ℱ
(
𝐹 𝑡
𝑓 (𝑚,𝑛, 𝑘)

)
,𝑀 𝑡

𝑓

)
4: Multi-cue extension:

𝑟 =
∑

𝑓 𝑤𝑓𝑟𝑓 =
∑

𝑓 𝑤𝑓ℱ−1
(
𝐴𝑡

𝑓 ×𝐾𝑡
𝑓

)
5: Find target: (𝑚̂, 𝑛̂) = argmax

(𝑚,𝑛)

𝑟 (𝑚,𝑛)

6: Calculate Model:
𝑀 ′

𝑓 = ℱ
(
𝐹 𝑡
𝑓 (𝑚̂, 𝑛̂, 𝑘)

)
𝐴′

𝑓 = 𝑌
/(
𝐾 ′

𝑓 + 𝜆
)
= 𝑌

/(
𝜅
(
𝑀 ′

𝑓 ,𝑀
′
𝑓

)
+ 𝜆

)
7: Update Model:

𝐴𝑡+1
𝑓 = 𝛾𝐴′

𝑓 + (1− 𝛾)𝐴𝑡
𝑓

𝑀 𝑡+1
𝑓 = 𝛾𝑀 ′

𝑓 + (1− 𝛾)𝑀 𝑡
𝑓

8: end for

III. EXPERIMENTAL RESULTS

The proposed tracker is implemented in MATLAB 2013A
on a PC with Intel Core2 CPU (2.66 GHz) with 2 GB memory,
and runs about 10 frames per second (fps) in this platform. In
this paper, we set 𝑤𝑐𝑑𝑓 = 1/6, 𝑤𝑒ℎ𝑜𝑔 = 1/2 and 𝑤𝑐𝑛 = 1/3.

We compare the proposed method with 10 state-of-the-art
trackers (KCF [32], Struck [33], SCM [34], TLD [35], VTD
[15], VTS [16], CSK [25], LSK [36], OAB [37], RS-V [38])
on 35 color sequences 2 in the CVPR2013 benchmark [26].
The best way to evaluate trackers is still a debatable subject.
Averaged measures like mean center location error or average
bounding box overlap penalize an accurate tracker that fails
for short-time more than an inaccurate tracker. According to
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Fig. 2. Tracking sequences for evaluation

Fig. 3. Precisions plots comparing with state-of-the-art trackers

Fig. 4. Precisions plots between different appearance models

[26], the precision plot shows the percentage of frames on
which the Center Location Error (CLE) of a tracker is within a
given threshold 𝑒, where CLE is defined as the center distance
between tracker output (𝑚̂, 𝑛̂) and ground truth (𝑚𝑔, 𝑛𝑔).

Fig.3 shows the precision plots containing the mean error
over all the 35 sequences, and a representative precision score
(𝑒 = 20) is used for ranking. In the precision plot, the proposed
tracker outperforms KCF [32] by 4.7% and Struck (the top
tracker on [26]) by 18.0% in mean CLE at the threshold of
20 pixels. KCF tracker is same as the single texture feature
(EHOG) used in CSK tracker. Fig. 4 and Table I summarize the
performances between multi-invariance appearance model and
single appearance model over 35 color sequences. Fig. 4 shows
that multi-invariance appearance model is better than most
recent state-of-the-art algorithms. According to the experimen-
tal result, the texture model (EHOG) and the color model
(CN) are the most important features of object expression.
In addition, the intensity feature supplies the correction of
tracking accuracy.

TABLE I
TRACKER PRECISIONS (𝑒 = 20) OVER 35 SEQUENCES

(BLACK INDICATES THE BEST)

Sequence Gray CDF EHOG CN Proposed
Basketball 0.284 0.022 0.923 0.997 0.974

Bolt 0.034 0.991 0.989 1.000 1.000
Boy 1.000 1.000 1.000 1.000 1.000

CarDark 1.000 1.000 1.000 1.000 1.000
CarScale 0.694 0.663 0.806 0.651 0.647

Coke 0.866 0.918 0.838 0.904 0.876
Couple 0.621 0.593 0.257 0.107 0.536

Crossing 1.000 1.000 1.000 1.000 1.000
David 0.652 1.000 1.000 1.000 1.000

David3 0.421 0.937 1.000 1.000 1.000
Deer 1.000 0.901 0.817 0.972 0.873
Doll 0.733 0.990 0.967 0.992 0.992

FaceOcc1 0.915 0.935 0.878 0.785 0.841
Football1 0.743 0.892 0.959 0.959 0.973

Girl 0.916 0.600 0.864 0.918 1.000
Ironman 0.145 0.078 0.217 0.169 0.446

Jogging.1 0.228 0.228 0.235 0.225 0.977
Jogging.2 1.000 0.186 0.163 1.000 1.000
Lemming 0.382 0.528 0.495 0.275 0.405

Liquor 0.196 0.189 0.423 0.407 0.435
Matrix 0.100 0.110 0.170 0.030 0.150

MotorRolling 0.037 0.037 0.043 0.061 0.049
MountainBike 1.000 1.000 1.000 1.000 1.000

Shaking 0.008 0.164 0.025 0.282 0.811
Singer1 0.476 0.855 0.980 1.000 1.000
Singer2 0.036 0.612 0.945 0.036 0.036
Skating1 0.700 1.000 1.000 0.517 1.000
Skiing 0.136 0.136 0.074 1.000 0.136
Soccer 0.258 0.151 0.793 0.204 0.214
Subway 0.240 1.000 1.000 1.000 1.000
Tiger1 0.480 0.797 0.975 0.410 0.941
Tiger2 0.110 0.244 0.356 0.455 0.501
Trellis 0.225 0.963 1.000 0.982 1.000

Walking 0.816 1.000 1.000 1.000 1.000
Walking2 0.402 0.388 0.440 0.414 0.408
Woman 0.248 0.940 0.938 0.940 0.940
Average 0.503 0.640 0.710 0.686 0.754

IV. CONCLUSION

In this work, we demonstrate that it is possible to build
multi-invariance appearance model to track targets success-
fully. By combining features including intensity, texture and
color information, our method achieves excellent result in
complicated and diverse environments. Extensive experiments
demonstrate that the proposed multi-invariance appearance
model and extended CSK algorithm perform quite well in the
unconstrained tracking situations. Meanwhile, there are many
improvements that could be explored. We expect to find an
adaptive weight selection strategy. We also hope to see that
the multi-invariance appearance model has useful applications
outside of tracking.
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