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Abstract. Deep convolutional neural networks achieve excellent im-
age up-sampling performance. However, CNN-based methods tend to
restore high-resolution results highly depending on traditional interpo-
lations (e.g. bicubic). In this paper, we present a deep sampling network
(DSN) for down-sampling and up-sampling without any cheap interpo-
lation. First, the down-sampling subnetwork is trained without supervi-
sion, thereby preserving more information and producing better visual
effects in the low-resolution image. Second, the up-sampling subnetwork
learns a sub-pixel residual with dense connections to accelerate conver-
gence and improve performance. DSN’s down-sampling subnetwork can
be used to generate photo-realistic low-resolution images and replace tra-
ditional down-sampling method in image processing. With the powerful
down-sampling process, the co-training DSN set a new state-of-the-art
performance for image super-resolution. Moreover, DSN is compatible
with existing image codecs to improve image compression.

Keywords: Image sampling, deep convolutional networks, down/up-
sampling.

1 Introduction

The aim of the image sampling is to generate a low-resolution (LR) image from
a high-resolution (HR) image or reconstruct the HR image in reverse. Single-
image up-sampling is widely used in computer vision applications including
HDTV [1], medical imaging [2], satellite imaging [3], and surveillance [4], where
high-frequency details are required on demand. As the use of mobile social net-
works (e.g., Google+, WeChat, and Twitter) continues to grow, thumbnail down-
sampling is another important way to optimize data storage and transmission
over limited-capacity channels.

Image up-sampling, also known as super-resolution (SR), has been studied for
decades. Early methods including bicubic interpolation [5], Lanczos resampling
[6], gradient profiles [7], and patch redundancy [8] are based on statistical image
priors or internal patch representations. More recently, learning-based methods

? The early work was completed while the author was with Tencent Wechat AI.
?? X. Xu is the corresponding author.
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have been proposed to model a mapping from LR to HR patches such as neighbor
embedding [9], sparse coding [10], and random forests [11]. However, image up-
sampling is highly ill-posed, since the HR to LR process contains non-invertible
down-sampling.

Due to their powerful learning capability, deep convolutional neural networks
(CNNs) have achieved state-of-the-art performance in many computer vision
tasks, such as image classification [12], object detection [13], and image segmen-
tation [14]. Recently, CNNs have been used to address this ill-posed inverse prob-
lem, demonstrating superiority over traditional learning paradigms. The first ex-
ample of the approach, super-resolution convolutional neural network (SRCNN)
[15] predicted the nonlinear LR to HR mapping in an end-to-end manner. To
reduce computational complexity, fast SRCNN (FSRCNN) [16] and efficient sub-
pixel convolutional neural network (ESPCN) [17] up-scaled the resolution only at
the output layer. Kim et al. [18] developed a very deep super-resolution (VDSR)
network with 20 convolutional layers by residual learning, and Mao et al. [19]
proposed a 30-layer residual encoder-decoder (RED) network with symmetric
skip connections to facilitate training. Deeply-recursive convolutional network
(DRCN) [20] introduced a very deep recursive layer via a chain structure with
16 recursions, and deep recursive residual network (DRRN) [21] adopted recur-
sive residual units to control the model parameters while increasing depth.

Despite achieving excellent performance, the CNN-based methods are highly
dependent on interpolation-based down/up-sampling, as shown in Fig. 1. The
limitations of these methods arise from two aspects:

Fig. 1. The classical framework based on CNNs for image up-sampling [15,18,19,20,21].
The HR image is down-sampled to synthesize the training samples. Then, the deep
model learns the mapping between the HR and the cheap SR up-scaled by the same
factor via bicubic interpolation.

Down-sampling. For down-sampling, the model trained for a specific interpo-
lation does not work well with the other interpolations, and different interpo-
lations significantly alter restoration accuracy. Therefore, all the solutions men-
tioned above generally assume that the degradation is a bicubic interpolation
(the default setting of imresize() in Matlab) when shrinking an image. How-
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ever, the bicubic function based on a weighting transformation resprents a cheap
down-sampling process that discards useful high-frequency details for HR image
restoration.
Up-sampling. With cheap up-sampling, the networks [18,19,20,21] increase the
resolution during preprocessing or at the first layer to learn the interpolation’s
residual. However, the up-sampling do not add information to solve the ill-posed
restoration problem. To replace cheap interpolation, ESPCN [17] and FSRCNN
[16] adopt sub-pixel shuffling and a deconvolution layer to improve efficiency,
respectively. However, without cheap up-sampling, they carry the input and re-
store the details as an auto-encoder, so converge slowly.

To address the above problems, we propose a deep sampling network (DSN)
without any cheap interpolation that is trained for simultaneous down- and up-
sampling.

– A learnable down-sampling subnetwork (Down-SNet) is trained without su-
pervision, thereby preserving more information and transmitting a better
visual effect to the LR image. For self-supervision, the super-pixel residual
is adopted with a novel activation function, called quantized bilateral ReLU
(Q-BReLU).

– An up-sampling subnetwork (Up-SNet) learns a sub-pixel residual with dense
connections to accelerate convergence and improve performance. First, the
dense pixel representation trained with deep supervision extracts the multi-
scale features by multi-level dictionaries, and second, the sub-pixel residual
restores the HR result without cheap up-sampling.

Compare to traditional down-sampling methods, the Down-SNet can preserve
more useful information and generate photo-realistic LR images. Compared to
existing CNN-based up-sampling methods, the co-training DSN achieves the best
performance with lower computational complexity.

2 CNN-based Sampling in Related Works

We first design an experiment to investigate the sampling in CNN-based SR
methods. In this section, we re-implement1 the baseline SRCNN [15] model with
the Adam [22] optimizer. The learning rate decreases by a factor of 0.1 from
10−3 to 10−5 every 50 epochs.

2.1 Learn Restoration for Specified Down-sample

Almost all CNN-based SR methods [15,16,17,19,18,20,21,23] are trained for a
specified down-sampling. As shown in Table 1, down-sampling asymmetry in
the training/testing phase results in poor restorations, even worse than the di-
rect bicubic interpolation. This is because the CNNs learn the targeted map-
ping for the specified degradation. Moreover, different down-sampling (nearest-
neighbor, bilinear, and bicubic) produce significantly different convergence rates

1 The SRCNN (9-1-5) re-implemented here achieves better perform than reported by
the authors (32.39dB) [15].
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(a) Down-sampling (b) Up-sampling

Fig. 2. Convergence and accuracy analyses on different down/up-sampling methods.

and restoration accuracies shown in Fig. 2(a). The degradation with bicubic
down-sampling contains more useful information, so the bicubic model converges
faster and achieves better performance. However, the bicubic interpolation is
still a cheap down-sampling process that discards useful details for HR image
restoration. In this paper, we simultaneously train a deep sampling network for
down-sampling and corresponding up-sampling.

Table 1. Comparison of different down-sampling degradations for scale factor ×3 on
Set5 [24] with PSNR (dB). The baseline PSNR of bicubic interpolation is 30.39.

Train

Test
Nearest Bilinear Bicubic Avg.

Nearest 30.59 29.76 30.56 30.30

Bilinear 25.38 32.17 31.19 29.58

Bicubic 27.59 31.92 32.451 30.70

2.2 Learn Mapping from Cheap Up-sample

In the popular CNN-based SR methods (e.g. SRCNN [15], VDSR [18], DRCN
[20], and DRRN [21]), cheap up-sampling is used during preprocessing to in-
crease the resolution before or at the first network layer. As shown in Fig. 2(b),
interpolations do not add information to improve restoration accuracy. Instead
of improving accuracy, the complex (bicubic) preprocessing prematurely intro-
duces smooth and inaccurate interpolation, resulting in a hard-to-train network.
Conversely, the nearest-neighbor interpolation achieves the best performance be-
cause it selects the raw value of the nearest point and does not consider the values
of neighboring points. To address this problem, ESPCN [17] and FSRCNN [16]
carry the input and restore details without cheap up-sampling. However, deep
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information carry results in a decreasing convergence rate. Therefore, we propose
sub-pixel residual learning to accelerate convergence and improve performance.

3 Deep Sampling Network

In this paper, we propose a deep sampling network (DSN) composed of a down-
sampling subnetwork and an up-sampling subnetwork. The DSN architecture is
presented in Fig. 3.

Fig. 3. The deep sampling network. (1) The down-sampling subnetwork (Down-SNet)
is trained in an unsupervised manner with super-pixel residual learning and the Q-
BReLU function. (2) The up-sampling subnetwork (Up-SNet) learns the dense pixel
representation by sub-pixel residual learning.

3.1 Unsupervised Down-sampling Subnetwork

A learnable down-sampling subnetwork (Down-SNet) is trained without super-
vision, which learns the super-pixel residual with a novel activation function,
called quantized bilateral ReLU (Q-BReLU).

Super-pixel Residual Learning Without a supervised signal, Down-SNet
can proactively retain useful information and discard redundant information.
However, the multi-layer network is an end-to-end relationship requiring very
long-term memory. For this reason, the LR image generated from the learned
features contains artifacts. We can simply solve this problem by super-pixel
residual-learning.

In Down-SNet, the pixel of LR output Lx,y of scale factor 1/s is largely
similar to the super-pixel of the HR input H. Therefore, we define the super-pixel
residual image for down-sampling Rd

x,y = Lx,y − 1
|Ω|
∑
{m,n}∈Ωs·(x,y)−bs/2c

Hm,n,

where b·c reduces the integer and Ω is a neighborhood with the size of s × s.
In Rd, most values are likely to be very low and even close to zero. Formally,
the down-sampling is denoted Fd [H]→ Rd, which includes an inference model
(three convolutional layers of size 3× 3 and stride 1) and a down-sampling layer
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(a convolutional layer of size s×s and stride of s). The original mapping is recast
into

Lx,y = Fd[H]x,y +
1

|Ω|
∑
{m,n}∈Ωs·(x,y)−bs/2c

Hm,n, (1)

which can be implemented by feedforward neural networks with shortcut con-
nections [25] and average pooling.

Quantized Bilateral ReLU (Q-BReLU) Standard nonlinear activation func-
tions such as the rectified linear unit (ReLU) offer local linearity to overcome the
vanishing gradient problem. However, ReLU is designed for classification prob-
lems rather than image restoration. In particular, ReLU only inhibits values less
than zero, which might lead to response overflow especially without supervision.
Moveover, the general digital image is quantified to integers between 0 and 255.

To overcome this limitation, here we propose the quantized bilateral rectified
linear unit (Q-BReLU) to keep bilateral restraint and response quantization, as
shown in Fig. 4. Q-BReLU is a variation of BReLU [26], which is adopted for haze
transmission restoration. BReLU is defined as fbrelu = max (min (x, tmax) , tmin),
where tmin,max is the marginal value. Denoting ∆t = tmax − tmin for terse ex-
pression, Q-BReLU is defined as

fqbrelu (x) =
∆t
Q−1

⌊
Q−1
∆t (fbrelu (x)− tmin) + 0.5

⌋
+ tmin,

(2)

where Q is the number of quantities.

(a) Q-BReLU (b) The gradient of Q-BReLU

Fig. 4. The quantized bilateral rectified linear unit (Q-BReLU) with 2-bit quantities
Q = 22. (a) Q-BReLU is denoted in solid blue. (b) The approximate gradient of Q-
BReLU is denoted in dashed red, and solid red denotes the spline fitting Q-BReLU.
Center quantization: the high-precision value is rounded to the nearest quantiza-
tion interval (between neighboring blue dashes); Zero mean deviation: the posi-
tive/negative (green/yellow area) deviation balance out the approximate bias.
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However, the gradient of Q-BReLU alternates between 0 and∞ according to
(2). We exploit an approximate gradient with local continuity for backpropaga-
tion learning. To retain center quantization and zero mean deviation, BReLU is
adopted as a spline function to fit Q-BReLU, as shown in Fig. 4(b). Therefore,
the approximate gradient of Q-BReLU is defined as

∂fqbrelu (x)

∂x
=

{
1, tmin < x < tmax

0, otherwise
. (3)

To verify the impact of Q-BReLU, we illustrate an example of ×2 down-sampling
in Fig. 5. The LR image generated without Q-BReLU contains irrational noise,
while the result with Q-BReLU appears natural.

(a) HR (b) Bicubic (c) w/o Q-BReLU (d) Q-BReLU

Fig. 5. The images baby from Set5 [24] generated by DSN with or without Q-BReLU.

3.2 Residual Up-sampling Subnetwork

The up-sampling subnetwork (Up-SNet) is a dense architecture that learns the
sub-pixel residual, achieving a high performance and efficiency without cheap
interpolation.

Dense Pixel Representation Up-SNet densely connects the pixel represen-
tation [27] for pixel-wise prediction. Each layer produces k feature maps, so it
follows that the l-th layer has k × l input feature maps. In the deep connection
layers, a large number of feature maps increase the computational cost and model
size. [28] demonstrated that a 1 × 1 bottleneck convolution improves computa-
tional efficiency and keeps the model compact. The performance improvement
of dense pixel representation come from three aspects:

(1) Multi-scale feature. For up-scaling, different components may be relevant to
different neighbourhood scales in the LR image. Up-SNet is a type of multi-
scale, performance-improving architecture: the receptive field get larger when
the network stacks more layers. Given a fixed kernel of size 3× 3, there are
multi-scale streams corresponding to {3, 5, 7, 9} receptive fields, respectively.
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(2) Deeply-supervised learning. Image up-sampling is a low-level vision task,
where the kernels in the shallow layers can be shared to recursively boost
performance. However, recursions are hard to train due to exploding and/or
vanishing gradients. Skip connections, similar to the deeply-supervised learn-
ing, overcome the vanishing gradient problem and enhance feature propaga-
tion.

(3) Multi-level dictionaries. Sparse-coding is a representative example-based up-
sampling method, where sparse coefficients are passed into a dictionary to
restore HR patches. Up-SNet can be viewed as a type of sparse coding: convo-
lutional kernels of size 3×3 are equivalent to dictionaries, and the bottlenecks
with nonlinear activation functions are equivalent to sparse coefficients. With
dense connections, the neural unit learns multi-level dictionaries.

Sub-pixel Residual Learning The HR image can be decomposed into low-
frequency information (low-resolution image) and high-frequency information
(residual image). In Up-SNet, the input image L and output image S share the
same low-frequency information. Without any cheap interpolation, we adopt a
sub-pixel residual learning to transmit the LR input to the HR result.

Depending on different sub-pixel location in HR space, the residual patterns
containing s2 channels are activated by a convolution of size 1 × 1. Sub-pixel
shuffle [17] is a periodic operator that rearranges the elements of an H ×W × s2

tensor to a tensor of shape s · H × s · W . In the mathematica formula, the
sub-pixel residual image for up-sampling is written as Ru

bx/sc,by/sc,s·(y\s)+(x\s) =
Sx,y − Lbx/sc,by/sc, where \ denotes the remainder operator. To learn the sub-
pixel residual image similarity to (1), the restoration result is defined by

Sx,y = Fu[L]bx/sc,by/sc,s·(y\s)+(x\s) + Lbx/sc,by/sc, (4)

where Fu[·] is the sub-pixel residual prediction. It is effectively implemented
using a tile layer and an element-wise sum layer.

4 Experiments

4.1 Implementation Details

The model is trained on 91 images from [10] and 200 images from the training set
in [29], which are widely used for SR [18,20,21,23]. Following [15], the luminance
channel is only considered in YCbCr color space, because humans are more
sensitive to luminance changes. We train a specific network for each scale factor
(×2, 3, 4).

The detailed DSN configurations and parameter settings shown in Fig. 3 are
summarized in Table 2. Motivated by the experiment, a leaky ReLU (LReLU)
flrelu(x) = max (x, 0.05x) is used instead of ReLU as the activation function,
except in the output layer. The layers with residual learning are initialized by
drawing randomly from a Gaussian distribution (µ = 0, σ = 0.001), because
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Table 2. The detailed configurations of DSN.

 Shortcut Trunk pad stride initialize 

D
o

w
n

-sam
p

lin
g
 

[
𝑑 × 𝑑 

AVG Pool
] 

[
3 × 3,64
LReLU

] × 3 1 1 MSRA 

[𝑑 × 𝑑, 1 ]        0 𝑑 Gaussian 

[
SUM Eltwise

Q-BReLU
] － － － 

U
p

-S
am

p
lin

g
 

[𝑑2 Tile] 

[
3 × 3,64
LReLU

]        1 1 MSRA 

[

1 × 1,64
LReLU

3 × 3,64
LReLU

] × 3 1 1 MSRA 

[1 × 1, 𝑑2 ]        0 1 Gaussian 

[
SUM Eltwise

Sub-pixel
] － － － 

 

most values in the residual images are likely to be zero or small. The other filter
weights are initialized according to [30].

In the training phase, we rotate the images through 90◦, 180◦, and 270◦ for
data augmentation. Sub-images are extracted to ensure that all pixels in the
original image appear once and only once as the ground truth of the training
data. For ×2, ×3, and ×4, we set the size of training sub-images as 60, 69, and
72, respectively. The model is trained with L1 loss using an Adam [22] optimizer
in the Caffe [31] package. The learning rate decreases by half from 10−3 to 10−5

every 50 epochs. The final layer learns 10 times slower as in [15]. Based on the
parameters above, training DSN with a batch-size of 256 takes about one day
using one Nvidia GeForce GTX 1080 GPU.

4.2 Image Reduced-Resolution Comparisons

Existing image down-sampling (e.g., nearest-neighbor, bilinear, and bicubic) is
based on local weighting. Interpolation transformation struggles to find the pixel-
wise weights of plausible solutions, which are typically over-smooth and of poor
perceptual quality; that is, they will lose valuable high-frequency details such as
texture. We illustrate this problem in Fig. 6, where multiple potential solutions
with high textural details are weighted to create smooth bilinear or bicubic re-
sults. The solutions based on linear functions (bilinear and bicubic) appear overly
smooth due to the pixel-wise weighing of possible solutions; the solution based on
nearest-neighbor optionally selects a sample in the manifold space. While Down-
SNet learns the residual Fd from a pixel-wise average (average pooling) towards
the potential manifold, and produces perceptually more convincing solutions.
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Bicubic

Bilinear

Nearest-
neighbor

AVG Pool

Potential

Manifold
Down-SNet

Fig. 6. Illustration of potential solutions and LR results obtained with existing inter-
polations and Down-SNet.

The proposed method provides a powerful Down-SNet for generating photo-
realistic LR images of high perceptual quality. Down-SNet encourages the LR
image to move towards regions of the potential manifold with high probability of
containing photo-realistic textures. Fig. 7 shows two standard test images (lena
and baboon) generated by Down-SNet compared to traditional down-sampling
methods. Down-SNet generates relatively sharper and richer textures.

(a) Bilinear (b) Bicubic (c) Down-SNet

Fig. 7. Reduced-resolution results with scale factor ×3. Down-SNet’s result looks
slightly sharper than bilinear and bicubic interpolation. (1) The first row shows the im-
age lena. Down-SNet generates more realistic and sharper hair textures. (2) The second
row shows the image baboon. Down-SNet produces high-frequency patterns missing in
the bicubic and bilinear results, e.g., the fur and the light-spot in the baboon’s eyeball.
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To quantitatively assess the down-sampling performance, bicubic degrada-
tion is replaced by Down-SNet to generate training samples for HR restoration.
We retrain the SR networks with three types of representative architectures, in-
cluding plain network (SRCNN [32]), residual network (VDSR [18]), and dense
network (Up-SNet). The Down-SNet remains fixed during the optimization pro-
cess. Due to useful information preserving, Down-SNet brings significant im-
provement for HR restoration shown in Table 3. Although the Down-SNet is
trained with Up-SNet in DSN, it has excellent generalization with the other net-
work architectures. Therefore, Down-SNet as a CNN-based down-sampling can
be used to replace traditional interpolation in image processing.

Table 3. Compare average PSNR with different down-sampling degradations for ×3
SR on datasets Set5 [24], Set14 [33], B100 [29] and Urban [34].

Dataset
SRCNN [32] VDSR [18] Up-SNet DSN

Bicubic Down-SNet Bicubic Down-SNet Bicubic Down-SNet (co-train)

Set5 32.75 33.24 33.66 33.85 33.67 33.98 34.29

Set14 29.30 29.78 29.77 29.93 29.80 30.19 30.30

B100 28.41 28.67 28.82 29.11 28.58 28.92 28.99

Urban 26.24 26.90 27.14 28.02 26.81 27.66 28.03

4.3 Image Super-Resolution Comparisons

With the powerful down-sampling process, more useful information is preserved
for image up-sampling. To further assess co-training DSN for SR, DSN is evalu-
ated using three different scale factors (×2,×3,×4) on four datasets [24,33,29,34].
We compute the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) to compare five recent methods including FSRCNN [16], VDSR [18],
DRCN [20], DRRN [21], and MemNet [23]. As shown in Table 4, the proposed
DSN outperforms the other methods. Qualitative comparisons of SRCNN [32],
FSRCNN [16], and VDSR [18] are illustrated in Fig. 8 with their public codes.
Our method produces relatively sharper edges and contours, while the other
methods generate blurry results. In addition, existing methods produce severe
distortions in some reconstructed results, whereas DSN reconstructs the texture
patterns and avoids the distortions.

In addition, we evaluate effectiveness according to execution time using the
public code of the compared methods. The experiments are conducted with an
Intel CPU (Xeon E5-2620, 2.1 GHz) and an NVIDIA GPU (GeForce GTX 1080).
Fig. 9 shows the PSNR of the comparator methods versus execution time. The
up-sampling phase of DSN out-performs existing methods. Even on a mobile
CPU platform (A9 of iPhone 6S), our method for scale factor ×3 implemented
with the ncnn2 library processes a 150 × 150 image in approximately 200 ms.

2 https://github.com/Tencent/ncnn
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Table 4. Average PSNR/SSIM for scale factors ×2, ×3 and ×4 on datasets Set5 [24],
Set14 [33], B100 [29] and Urban [34]. Red indicates the best performance and blue
indicates the second-best performance.

Dataset Scale FSRCNN [16] VDSR [18] DRCN [20] DRRN [21] MemNet [23] DSN

Set5

×2 37.00/0.9558 37.53/0.9587 37.63/0.9588 37.74/0.9591 37.78/0.9597 37.92/0.9549

×3 33.16/0.9140 33.66/0.9213 33.82/0.9226 34.03/0.9244 34.09/0.9248 34.29/0.9300

×4 30.71/0.8657 31.35/0.8838 31.53/0.8854 31.68/0.8888 31.74/0.8893 31.92/0.9032

Set14

×2 32.63/0.9088 33.03/0.9124 33.04/0.9118 33.23/0.9136 33.28/0.9142 34.11/0.9286

×3 29.43/0.8242 29.77/0.8314 29.76/0.8311 29.96/0.8349 30.00/0.8350 30.30/0.8578

×4 27.59/0.7535 28.01/0.7674 28.02/0.7670 28.21/0.7721 28.26/0.7723 28.34/0.7539

B100

×2 31.50/0.8906 31.90/0.8960 31.85/0.8942 32.05/0.8973 32.08/0.8978 32.52/0.9074

×3 28.52/0.7893 28.82/0.7976 28.80/0.7963 28.95/0.8004 28.96/0.8001 28.99/0.7969

×4 26.96/0.7128 27.29/0.7251 27.23/0.7233 27.38/0.7284 27.40/0.7281 27.22/0.7010

Urban

×2 29.85/0.9009 30.76/0.9140 30.75/0.133 31.23/0.9188 31.31/0.9195 32.27/0.9305

×3 26.42/0.8064 27.14/0.8279 27.15/0.8276 27.53/0.8378 27.56/0.8376 28.03/0.8346

×4 24.60/0.7258 25.18/0.7524 25.14/0.7510 25.44/0.7638 25.50/0.7630 25.66/0.7145

Therefore, DSN can be used to generate thumbnails and reconstruct HR images
for wide mobile applications.

4.4 Image Compression Comparisons

Image compression is a fundamental and well-studied engineering problem that
aims to reduce irrelevance and redundancy for storage and transmission. With
decreasing bits per pixel (bpp), high compression ratios cause blocking artifacts
or noises in the decoded images. Existing image codecs usually consists of trans-
formation, quantization, and entropy coding. Recently, deep learning-based im-
age compression methods [35,36] have achieved competitive performance. How-
ever, they are incompatible with existing image codecs, limiting their wideapread
application in engineering. DSN is compatible with existing image coding stan-
dards to improve image compression. In DSN, Down-SNet produces a compact
transformation for encoding using existing codecs, and Up-SNet reconstructs the
decoded image to avoid blocking artifacts.

To evaluate the performance of DSN for image compression, we conduct ex-
periments with standard compression methods including JPEG and JPEG2000.
For compression evaluation, luminance values are usually considered in YCbCr
color space. Bits for header information of compressed files count towards the
bit rate of the compared methods. Since JPEG is without lossless compression,
compared to JPEG, we use DSN for compression transforming and a common file
compressor for quantization coding. The raw image is down-sampled by Down-
SNet and stored as a .pgm file, an uncompressed format. Then, the .pgm file is
coded by 7-Zip 3 with solid compression. Compared to JPEG2000, we simply

3 http://www.7-zip.org/
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Ground True Bicubic SRCNN [32] FSRCNN [16] VDSR [18] DSN

(PSNR/SSIM) (16.82/0.3572) (19.93/0.4999) (19.62/0.4100) (20.42/0.3765) (22.44/0.7384)

(PSNR/SSIM) (24.26/0.6997) (26.19/0.7566) (27.65/0.7637) (30.27/0.7894) (32.37/0.8266)

(PSNR/SSIM) (23.42/0.3567) (23.95/0.0.3961) (23.78/0.3567) (25.24/0.4567) (27.92/0.9024)

Fig. 8. Super-resolution results with scale factor ×3 and average PSNR/SSIM of each
sub-figure. (1) The first row shows image 253027 from B100 [29]. DSN accurately
reconstruct the original pattern, while severe distortions are found in the results using
other methods. (2) The second row shows image ppt3 from Set14 [33]. Text in DSN
is sharp and identified, while others are blurry. (3) The last row shows image img002
from Urban [34]. DSN reconstructs the lines well, while other methods generate blurry
results.

adopt OpenJPEG 4 with lossless compression to code the LR image generated
by Down-SNet.

In Table 5, we evaluate the compression ratio on Set5 with a similar distortion
factor SSIM. We use DSN trained with scale factor ×3 as the transformation.
For JPEG and JPEG2000, we test the codecs at quality parameter q = 44
and compression ratio r = 13%, respectively. The comparisons show that the
proposed method significantly outperforms JPEG and JPEG2000 in terms of
bbp. To demonstrate the qualitative nature of compression artifacts, we show
a representative example of the compressed image butterfly with bpp ≈ 0.74 in
Fig. 10.

4 http://www.openjpeg.org/
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Fig. 9. Plot of the trade-off between accuracy and speed for different methods on Set5
[24] with scale factor ×3. The proposed DSN achieves better restoration quality than
existing methods and is 100-times faster than MemNet [23].

Table 5. bpp/SSIM results of DSN + (7-Zip/JPEG2000), JPEG and JPEG2000 on
dataset Set5 [24].

Image
JPEG JPEG2000 (J2K)

DSN + 7-Zip JPEG (q = 44) DSN + J2K J2K (r = 13%)

baby (510× 510) 0.6051/0.9829 0.5367/0.9614 0.5189/0.9829 0.6000/0.9713

bird (288× 288) 0.6726/0.9656 0.6639/0.9609 0.6012/0.9656 0.5971/0.9581

butterfly (255× 255) 0.7420/0.9608 1.1448/0.9411 0.7524/0.9608 0.5878/0.9160

head (279× 279) 0.6050/0.8376 0.6057/0.8082 0.5400/0.8376 0.5700/0.8470

woman (228× 342) 0.6689/0.9439 0.7252/0.9326 0.6157/0.9439 0.5960/0.9436

Average 0.6587/0.9300 0.7353/0.9290 0.5800/0.9300 0.5902/0.9272

5 Conclusion

In image sampling, down-sampling loses useful information and up-sampling at
the first layer does not provide extra information. To address these problems,
hear we proposed a deep sampling network (DSN). DSN is an end-to-end system
without any cheap interpolation to simultaneously learn mappings for resolution
reduction and improvement. The down-sampling subnetwork in DSN can also
be applied to generate photo-realistic LR images and replace traditional inter-
polation in image processing. Moreover, our experimental results reveal that the
co-training network achieves state-of-the-art performance on SR at higher speed,
and improves image compression with existing image coding standards.
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