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ABSTRACT
Visual tracking is a challenging problem due to various fac-
tors such as deformation, rotation and illumination. As is well
known, given the superior tracking performance of human vi-
sion, bio-inspired model is expected to improve the computer
visual tracking. However, the design of bio-inspired tracking
framework is challenging, due to the incomplete comprehen-
sion and hyper-scale of senior neurons, which will influence
the effectiveness and real-time performance of the tracker.
According to the ventral stream in visual cortex, a novel bio-
inspired tracker (BIT) is proposed, which simulates shallow
neurons (S1 and C1) to extract low-level bio-inspired feature
for target appearance and imitates senior learning mechanism
(S2 and C2) to combine generative and discriminative model
for position estimation. In addition, Fast Fourier Transform
(FFT) is adopted for real-time learning and detection in this
framework. On the recent benchmark[1], extensive experi-
mental results show BIT performs favorably against state-of-
the-art methods in terms of accuracy and robustness.

Index Terms— Bio-inspired model, visual tracking

1. INTRODUCTION

Visual object tracking is one of the fundamental problems
of computer vision, with wide-ranging applications including
video surveillance, human-machine interfaces and robot per-
ception. Although visual tracking has been investigated in-
tensively in the past decade, it is still an enormous challenge
in real application because of various factors such as pose,
occlusion, scale and illumination. Recent tracking algorithms
can be split into two main modules generally: feature extrac-
tion and tracking model.

Current tracking features can be categorized into hand-
crafted and automated. The design of handcrafted features
for tracking (e.g. HoG[2], Haar-like[3], color histogram[4])
is difficult, depending on the time-consuming parameter ad-
justment; automated features learn appearance model from
input images, which can be unsupervised as PCA[5] or super-
vised as sparse coding[6], but require a good underlying mod-
el and decrease the real-time performance. The bio-inspired
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model avoids the parameter adjustment of handcrafted fea-
ture and the parameter learning of automated feature. X-
ing et al.[7] proposed a tracking-by-detection algorithm based
on bio-inspired C2 feature, which incorrectly regards senior
learning mechanism as a feature extraction, leading to low
accuracy and unsatisfying real-time performance. Based on
the biology expert knowledge and heuristics, a low-level bio-
inspired feature simulating shallow neurons including S1 and
C1 units is proposed for visual tracking, which exhibits a well
trade-off between invariance and discrimination.

Existing tracking model can be generally categorized as
generative or discriminative. For generative models[8, 9, 10],
tracking is formulated as searching for the most similar region
to the target object within a neighborhood. Discriminative
models[11, 12, 13] treat tracking as a classification problem
to distinguish the target object from the background. There-
fore, an outstanding model should exploit the advantages of
both generative and discriminative methods. Li et al.[14] pro-
posed a simplified biologically inspired feature (SBIF) for
object representation, but ignores senior learning mechanis-
m in ventral stream. Combining generative and discrimina-
tive method, we proposed a bio-inspired tracking framework:
the response of S2 units is a generative model via convolu-
tion and the C2 classifier simulates neuronal connection as a
discriminative model.

In this paper, a bio-inspired tracker based on the ventral
stream is proposed, which outperforms state-of-the-art meth-
ods on the recent benchmark. Corresponding to feature ex-
traction and tracking model of traditional trackers, a low-level
bio-inspired feature is used for simulating shallow neurons
(S1 and C1) and a joint model is used for senior learning (S2
and C2). Importantly, our model exploits FFT to speed up the
bio-inspired model and dense sampling.

2. BIO-INSPIRED TRACKER

Visual processing in cortex is modeled as a hierarchy of in-
creasingly sophisticated representations. A recent theory[15]
of the feed-forward path of object recognition in visual cor-
tex accounts for the ventral stream processing from primary
visual cortex (V1) to prefrontal cortex (PFC). In the ventral
stream, a HMAX model[16] proposed for object recognition



Fig. 1. Bio-inspired Tracker

is particularly designed for visual tracking, which contains
alternating layers called simple (S) and complex (C) cell unit-
s. According to the primate visual pathway, the bio-inspired
framework proposed is shown as Fig.1, which includes S1
units modeling primary visual cortex, C1 units simulating
cortical complex cells, S2 and C2 units corresponding to the
learning mechanism of senior neurons.

2.1. S1 units: classical simple cells

In the primary visual cortex (V1) [17], simple cell receptive
field has the basic characteristics of multi-directional, multi-
scale and multi-frequency selection. S1 units can be described
by Gabor filters [18], which have been shown to provide an
appropriate model of cortical simple cell receptive fields and
are described by the following equation (1):

G (x, y, θ, s(δ, λ, γ)) = exp

(
− (X2+γ2Y 2)

2σ2

)
× cos

(
2π
λ X

)
s.t. X = x cos θ + y sin θ, Y = −x cos θ + y sin θ

,

(1)
where the filter patch coordinate (x, y), the orientation θ, s-
cales s with 3 parameters (bandwidth δ, wavelength λ and
aspect-ratio γ). According to [18], we arranged a series of
Gabor filters to form a pyramid of scales, spanning a range
of sizes from 7 × 7 to 25 × 25 pixels in steps of two pixels
to model the receipt-field ξ of the simple cells (the parameter
values shown in Table 1 for details). The filters come in 4
orientations (θ = π/4, π/2, 3π/4, π) and 10 scales s that are
arranged in 8 bands ε, thus leading to 40 different S1 recep-
tive field types total. The responding result of classical simple
cells can be described as (2).

S1 (x, y, θ, s) = I (x, y)⊗G (x, y, θ, s) , (2)

Table 1. Summary of parameters used in BIT framework
Band ε Scale s Receipt-field ξ δ λ γ

1 1 7× 7 2.8 3.5 0.23
2 9× 9 3.6 4.6 0.28

2 3 11× 11 4.5 5.6 0.32
4 13× 13 5.4 6.8 0.37

3 5 15× 15 6.3 7.9 0.41
6 17× 17 7.3 9.1 0.46

4 7 19× 19 8.2 10.3 0.51
8 21× 21 9.2 11.5 0.55

5 9 23× 23 10.2 12.7 0.60
10 25× 25 11.3 14.1 0.64

where I (x, y) is the original gray-scale image of tracking se-
quences.

2.2. C1 units: cortical complex cells

The cortical complex cells (V2) receive the response from
simple cells and play the role of primary linear feature in-
tegration. C1 units [19] correspond to complex cells, which
show the invariance to scale and shift: complex cells tend
to have broader spatial frequency (scale invariance) and larg-
er receptive fields (shift invariance). Ilan et al.[20] proposed
the spatial integration properties of complex cells can be de-
scribed by a series of maximum pooling operation.
• Scale invariance: There are 5 bands for a total of 10 differ-

ent scale filter sizes, each of which contains two adjacent
S1 filters sizes shown in Table 1. In this stage, the max-
imum value is recorded over the two scales maps within
the same spatial location.

• Shift invariance: The C1 unit responses are computed by
subsampling these maps using a cell grid Σ of size 5× 5.
From each grid cell, one single measurement is obtained
by taking the maximum of all 25 elements.
In summary, C1 response can be described as follow:

C1 (x, y, θ, ε) = max
(x,y)∈Σ

(
max

s={2ε,2ε−1}
S1 (x, y, θ, s)

)
(3)

2.3. S2 units: shape-tuned learning

The tuning properties of neurons in the ventral stream of vi-
sual cortex, from V2 to infer-temporal (IT) cortex, play a key
role for visual perception in primates and in particular for
their object recognition abilities [21]. This training process
can be regarded as a generative model, in which S2 units pool
over afferent C1 units within its receptive field. Each S2 unit
response depends in a radial basis function (RBF) [18] on the
Euclidean distance between a new input X and a stored pro-
totype P . For an image patch from the previous C1 layer, the
response r of the corresponding to S2 units is given by:

r = exp
(
−β‖X − P‖2

)
, (4)



where β defines the sharpness of the tuning coefficient. At
runtime, S2 response maps are computed across all positions
by (4) for each band of C2 units.

2.4. C2 units: task-dependent learning

The task-specific circuits from IT to prefrontal cortex (PFC)
require learning for the discrimination between target objects
and background clusters. According to bioresearch[21], the
routine running in PFC as a classifier is trained on a particular
task in a supervised way and receives the activity of a few
hundred neurons in IT. Thus, a convolutional neural network
(CNN) could correspond to the task-specific circuits found in
C2 units with neurons from IT to PFC as

C2 (x, y) =
∑
θ,ε

W (x, y)⊗ S2 (x, y, θ, ε), (5)

where W is the connection weights of neural network. In
addition, a fast estimate method of W will be introduced in
next subsection.

2.5. Real-time bio-inspired tracker via FFT

The real-time performance is an important index of object vi-
sual tracking method. A lot of tracking approach[10, 22, 4]
has been tracking-by-detection, which stems directly from
the development of discriminative methods in machine learn-
ing. Almost all of the proposed tracking-by-detection meth-
ods were based on a sparse sampling strategy. In each frame,
a small number of samples are collected in the targets neigh-
borhood by particle filter, because the cost of not doing so
would be prohibitive. Therefore, speeding up the dense sam-
pling of S2 and C2 response calculation is a key point of BIT.
In this subsection, a real-time BIT based on dense sampling
via Fast Fourier transform (FFT) will be introduced.

S2 units: According to (4), we know S2 units respond
corresponds to a kernel method based on RBF, which can be
rewrite similar to linear function as follow (6), when the RBF
is a standard normal function (β = 1

/
2σ2).

r = exp
(
−1/

2σ2‖X − P‖2
)

= exp
(
−1/2

(
XTX + PTP − 2XTP

))
∼ exp

(
XTP

)
∼ XTP

(6)

Furthermore, linear kernel is usually preferred in time-critical
problems such as tracking, because the weights vector can be
computed explicitly. At time t , S2 units dense respond map
was calculated by a linear function instead of RBF as follows.

S2t+1 (x, y, θ, ε) = C1t+1 (x, y, θ, ε)⊗C1Pt (x, y, θ, ε) (7)

We note (7) can be transformed to the frequency domain, in
which FFT can be used for fast convolution. that is,

F [S2t+1 (·, θ, ε)] = F [C1t+1 (·, θ, ε)]�F
[
C1Pt (·, θ, ε)

]
,

(8)

where F [] denotes the FFT function and � is the element-
wise product.

C2 units:As with S2 units, FFT algorithm also can be
used for fast convolution and deconvolution in C2 units. Note
that the network comprising units with a Gaussian-like tuning
function together on their outputs. In order to estimate neu-
ronal connection weightsW , the C2 units response map of an
object location is modeled as

C2 (x, y) = exp

(
− 1

2σ2
s

(
(x− xo)2

+ (y − yo)2
))

, (9)

where σs is a scale parameter and (xo, yo) is the center of
tracking target. Therefore, the neuron connection weights W
was showed as

F [W (x, y)] =
∑
θ,ε

F [C2 (x, y)]

F [S2 (x, y, θ, ε)]
(10)

The object location (x̂, ŷ) in the (t+1)-th frame is determined
by maximizing the new C2 response map.

(x̂, ŷ) = arg max
(x,y)

C2t+1 (x, y) , (11)

whereC2t+1 (·) = F−1
[∑

θ,ε F [Wt (·)]�F [S2t+1 (·, θ, ε)]
]

and F−1[] denotes the inverse FFT function.
Updating method: Dependent on the spatial and fre-

quency domains, a classical tracking model updating method
is used in this paper. At the t-th frame, the BIT is updated by{
C1Pt+1 (·, θ, ε) = ρC1 (x̂, ŷ, θ, ε) + (1− ρ)C1Pt (·, θ, ε)
F [Wt+1 (·)] = ρF [W (x̂, ŷ)] + (1− ρ)F [Wt (·)] ,

(12)
where ρ is a learning parameter, C1 (x̂, ŷ, θ, ε) is the C1 u-
nits spatial model computed by (3) and F [W (x̂, ŷ)] is the
frequency model of neural weights computed by (10).

3. EXPERIMENTAL RESULTS

The proposed tracker is implemented in MATLAB 2013A on
a PC with Intel Core2 CPU (2.66 GHz) with 2 GB memory,
and runs about 10 frames per second (fps) in this platform.

We compared the proposed method with 10 state-of-
the-art trackers (Struck[11], SCM[22], TLD[12], CXT[13],
VTD[8], VTS[9], CSK[23], ASLA[10], LOT[4], OAB[24])
on the CVPR2013 benchmark [1] that includes 50 sequences.
Each sequence is tagged with a number of attributes indi-
cating to the presence of 11 different challenges, including
Illumination Variation (IV), Scale Variation (SC), Occlusion
(OCC), Deformation (DEF), Motion Blur (MB), Fast Mo-
tion (FM), In-Plane Rotation (IPR), Out-of-Plane Rotation
(OPR), Out-of-View (OV), Background Clutters (BC), Low
Resolution (LR). The best way to evaluate trackers is still
a debatable subject. Averaged measures like mean center



Table 2. Tracker precisions (e = 20) over 11 subsets (Red indicates the best while blue indicates the second best)
BIT Struck[11] SCM[22] TLD[12] CXT[13] VTD[8] VTS[9] CSK[23] ASLA[10]

ALL 0.693 0.656 0.648 0.608 0.577 0.576 0.575 0.545 0.532
IV 0.607 0.558 0.592 0.537 0.505 0.557 0.572 0.481 0.516
SV 0.652 0.639 0.672 0.606 0.550 0.597 0.582 0.503 0.552

OCC 0.631 0.565 0.639 0.563 0.494 0.546 0.533 0.500 0.460
DEF 0.612 0.521 0.586 0.512 0.422 0.501 0.487 0.476 0.445
MB 0.537 0.551 0.339 0.518 0.509 0.375 0.375 0.342 0.278
FM 0.502 0.604 0.331 0.551 0.519 0.353 0.351 0.381 0.253
IPR 0.620 0.617 0.596 0.584 0.612 0.600 0.578 0.547 0.511
OPR 0.629 0.597 0.617 0.596 0.576 0.620 0.603 0.540 0.518
OV 0.388 0.539 0.429 0.576 0.510 0.462 0.455 0.379 0.333
BC 0.689 0.585 0.578 0.428 0.443 0.571 0.578 0.585 0.496
LR 0.516 0.545 0.305 0.349 0.371 0.168 0.187 0.411 0.156

Fig. 2. Precisions plots over all 50 sequences

location error or average bounding box overlap penalize an
accurate tracker that fails for short-time more than an inac-
curate tracker. According to [1], the precision plot shows
the percentage of frames on which the Center Location Error
(CLE) of a tracker is within a given threshold e, where CLE
is defined as the center distance between tracker output (x̂, ŷ)
and ground truth (xg, yg).

Fig.2 shows the precision plots containing the mean er-
ror over all the 50 sequences, and a representative precision
score (e = 20) is used for ranking. In the precision plot, the
proposed BIT outperforms Struck[11] by 3.7% in mean CLE
at the threshold of 20 pixels. On the other hand, the track-
ing drift of SCM[22] is less than Struck in the high-precision
(e < 20), and BIT also acquire the same accuracy as SCM, s-
ince SCM and BIT both combine the advantages of generative
and discriminative models. The different is SCM employs s-

parse coding, while BIT adopts bio-inspired model.
Table 2 summarizes the performances between BIT and

the top 8 trackers over 11 typical video subsets. Clearly,
BIT almost achieved excellent performances in 11 typical
challenge subsets, especially on IV, DEF, IPR, OPR and BC.
Multi-direction Gabor filters used in S1 units contribute to the
robustness of illumination (IV) and rotation (IPR and OPR).
C1 units provide the scale and shift competitive mechanism
to deal with scale variation (SV) and deformation (DEF).
Moreover, the generative model in S2 units and the discrim-
inative model in C2 units rise to the challenges of occlusion
(OCC) and background clutters (BC) respectively.

4. CONCLUSION

For the first time, we successfully apply bio-inspired model to
real-time visual tracking. Depending on bioresearch, the pro-
posed novel bio-inspired tracker models the ventral stream of
primate visual cortex, extracting low-level bio-inspired fea-
ture in S1 and C1 units, simulating the learning mechanism of
senior neurons in S2 and C2 units. Furthermore, the compli-
cated bio-inspired tracker is still real-time since FFT is used
to online learning and detection. Numerous experiments with
state-of-the-art algorithms on challenging sequences demon-
strated that BIT achieves favorable results in terms of accu-
racy and robustness. However, C2 units using a single layer
convolutional network cannot simulate neurons connection in
PFC perfectly, which provides a good starting platform for
further research into deep neural network.
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