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ABSTRACT

Offline-trained trackers based on convolutional neural net-
works (CNNs) have shown great potential in achieving bal-
anced accuracy and real-time speed. However, offline-trained
trackers are prone to drift to background clutters. In this pa-
per, we present an adaptive selection network tracker (ASNT)
to address the tracking drift problem. Inspired by feature se-
lection technique used in other vision problems, we introduce
a learnable selection unit for Siamese network based track-
ers. The selection unit enables the tracker to select relevant
feature map automatically for the target. Channel dropout is
applied in the selection unit to improve generalization per-
formance for convolutional layers. To further improve the
discrimination between background clutters and the target, an
adaptive method is used to initialize the tracker for each video
sequence. Experiments on OTB-2013 and VOT2014 datasets
demonstrate that our ASNT tracker has a comparable perfor-
mance against state-of-the-art methods, yet can run at a speed
of over 100 fps.

Index Terms— online adaption, feature selection, real-
time tracking

1. INTRODUCTION

Visual object tracking [1, 2, 3, 4] is a fundamental problem in
computer vision with numerous applications, including mo-
tion analysis, video surveillance, human-computer interaction
and robot perception. Given an object marked in the first
frame, the goal of single-object tracker is to locate the se-
lected object in the subsequent frames.

Convolutional neural networks (CNNs) have achieved
great successes in a wide range of visual tasks [7, 8, 9]. Many
works have been proposed to replace hand-crafted features
with deep features in the traditional tracking framework, such
as correlation filters [10, 11]. Ma et al. [10] propose to ex-
ploit different CNN layers and learn correlation filters on each
layer to encode the target appearance. HDT [11] adaptively
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(a) Input (b) GOTURN [5] (c) ASNT (ours)

Fig. 1. Tracking results of GOTURN (red rectangles) and
ASNT (green rectangles) for coke, subway and cardark se-
quences from [6]. We visualize the feature map of GOTURN
and ASNT by channel average in (b) and (c), respectively.
The feature map of GOTURN is noisy and it tends to drift to
background clutters where large responses exist. In the fea-
ture map of ASNT, the large responses mainly exist within
the target region, thus ANST achieves a more robust perfor-
mance.

hedges features from different CNN layers in an online man-
ner for visual tracking. The integration of deep features leads
to a radical increase in the number of model parameters. Be-
sides, correlation filters based trackers typically update the
model in every frame. Although deep features vastly improve
tracking performance of correlation filters based trackers, the
factors described above result in slow tracking speed.

Recently, CNN-based methods [12, 13, 14, 15, 16, 5, 17,
18] have been proposed to learn the tracking models, which
can be categorized into online-updated and offline-trained.
Online-updated trackers: Several online-updated trackers
[12, 13] based on CNNs typically draw positive and negative
training examples around the estimated target to incremen-
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Fig. 2. Pipeline of the adaptive selection network tracker (ASNT). ASNT can be broken down into three constituent modules,
namely feature representation ϕ, selection unit F and motion regression φ. (1) Feature representation ϕ is trained offline and
fine-tuned adaptively in the initial frame. (2) Selection unit F performs dynamic feature recalibration with channel dropout to
select more relevant features. (3) Motion regression φ compares the features from the target object and the selected features in
the current frame to find where the target has moved.

tally learn a classifier. MDNet [12], the winner of the VOT
2015 challenge, learns a per-object classifier online. In [13],
two CNNs are learned online for short-term and long-term
appearance variation. FCNT [14] adopts the existing offline
pre-trained network and introduces two convolutional layers
to capture the appearance change with online updating. How-
ever, these methods often suffer from high computation bur-
den and hardly run in real-time.
Offline-trained trackers: Some CNN-based trackers with-
out online updating have been proposed, such as tracking by
matching [15, 18] and tracking by location prediction [5, 17].
In [18], the SINT method generates a lot of particles and
calculates their similarity scores using the Siamese network,
which makes SINT run slowly. Bertinetto et al. [15] pro-
pose to learn a matching function with a fully convolutional
Siamese network on a video object detection dataset. Since
these trackers [15, 17, 5] are trained entirely offline, the net-
works are fast to evaluate at test time, allowing these meth-
ods to operate at faster than real-time speeds. However, the
capabilities of offline trackers are limited because they can-
not adapt to targeted information. GOTURN [5] as a real-
time CNN-based tracker, trains the tracking model offline to
regress the target location. Although GOTURN can run at
high frame rates, it has lower tracking accuracy compared to
the state-of-the-art trackers. The limits of GOTURN mainly
come from two aspects. First, GOTURN benefits little from
the end-to-end training since it borrows all the convolutional
features pre-trained on ImageNet without finetuning. Sec-
ond, GOTURN freezes all the weights of the tracking network
and does not use any online adaption techniques. These two
factors make GOTURN easily drifting to background clutters
(shown in Fig. 1(b)). More recently, several works [16, 19]
are proposed to address tracking drift for Siamese network
based trackers. However, these methods could not estimate

the scale of the target directly, the tracking speed is limited
by the time-consuming evaluation on several scaled versions
of the search image.

Based on GOTURN [5], we propose an adaptive selec-
tion network to address tracking drift and keep real-time per-
formance (shown in Fig. 1(c)). Our main contributions are
summarized as follows.

• First, a learnable selection unit is proposed to perform
feature selection by highlighting relevant features and
discounting less useful ones.

• Second, we apply channel dropout in the selection
unit to reduce the correlation between learned features.
Channel dropout forces the network to learn the fea-
tures with better generalization.

• Third, an adaptive method is used to learn target-
specific information, which greatly improves the track-
ing performance.

Extensive experiments on two popular benchmark datasets
(OTB-2013 [6] and VOT2014 [20]) demonstrate that the pro-
posed tracking algorithm can achieve state-of-the-art perfor-
mance at high frame rates.

2. ADAPTIVE SELECTION NETWORK TRACKER

The adaptive selection network tracker (ASNT) proposed by
us is illustrated in Fig. 2. We use the initial appearance of the
object as target patch. The search patch is cropped centered
at the previous position of the target. An identical transfor-
mation ϕ is applied on the target patch and the search patch
to obtain the target feature T and the candidate feature S, re-
spectively. The feature mapS of search patch is reweighted to
generate the recalibrated feature map S̃ by the selection unit.



Intheend,thetargetlocationisregressedbytheconnection
betweenTandS̃.DetailednetworksettingsofASNTshown
inFigure2aresummarizedinTable1.

2.1.SelectionUnit

Thegoaloffeatureselectionistohighlightrelevantfeatures
andsuppresslessusefulones.InspiredbySENet[?],wepro-
posealearnableselectionunittoexplorethebenefitsofoffline
training.DifferentfromSENet,weintegratetargetinforma-
tionintosearchstreamtorecalibratethecandidatefeatureas
illustratedinFig.2.Theselectionunitcanbebrokendown
intotwoparts,includingglobalaveragepoolingandbottle-
neckstructure.
Toensureefficiency,weuseamuchshallowernetwork

comparedwiththestate-of-the-artarchitectures,wherethere-
ceptionfieldofthenetworkismuchsmaller. Therefore,a
globalaveragepooling(GAP)isutilizedtogeneratechannel-
wisestatistics,whichcanfullyexploitcontextualinforma-
tion.Formally,thec-thelementofstatistic̄T∈RCisgiven
by

T̄c=
1

Wt×Ht

W

i=1

H

j=1

Tc(i,j), (1)

whereT∈RWt×Ht×Cisthefeaturemapoftargetpatch.
Abottleneckstructureisusedtofullyexplorechannel-

wisedependencies.Thebottleneckismadeupoftwofully
connectedlayerswithparametersW 1andW 2,eachlayer
isfollowedbybatchnormalizationtostabilizeandspeedup
trainingprocess. Thederivationoftherecalibratedfeature
mapS̃∈RWs×Hs×Ccanbeformalizedas

S̃=fc σW 2δW 1T̄ ,S , (2)

whereδ(·)denotesReLUactivationfunction,σ(·)denotes
Sigmoidactivationfunction,andfc(ω,S)referstochannel-
wisemultiplicationbetweenthesearchfeaturemapS ∈
RWs×Hs×Candtheselectionweightω∈RC.

2.2. ChannelDropout

CNNscanberegradedasanensemblewitheachchannelof
thefeaturemaptodetectanindividualpattern.Theselection
unitasafeaturedetectorreinforcesacertaintypeofvisual
patterns,wherediscriminativefeaturesaremoreimportant.
Inthispaper,weproposechanneldropouttoincreasethedi-
versityofthevisualpatterns.
Dropoutforcesthenetworktolearninterpretablefea-

tures,whicharelessco-adaptedandleadtobettergeneraliza-
tion.However,ithasbeendemonstratedin[21]thatstandard
dropoutfailstoreducethecorrelationbetweenlearnedfea-
turesinconvolutionallayersandaspatialdropoutisformu-
latedtosetallthevaluesacrosstherandomlyselectedchan-
nelsofthefeaturemapintozeros.

Inourcase,duetothechannel-wisemultiplicationinthe
selectionunit,channeldropoutcanbeeasilyimplementedby
standarddropoutintheselectionweightω.Wecanselectthe
featuremaprandomlybyperformingchanneldropout.Be-
sides,byintroducingchanneldropout,ourproposedASNTis
lesslikelytooverfitthanGOTURN[5].Inparticular,theef-
fectivenessofchanneldropoutisverifiedintheexperimental
section.

Table1.ThedetailedarchitectureofASNT.K,C,S,P,D

Layer Target Stream Search Stream Parameters 

Feature
 

 
Representatio

n
 

Input 113×113×3 227×227×3 — 

Conv1 26×26×96 55×55×96 K11C96S4 

Pool1 13×13×96 27×27×96 K3S2 

Conv2 13×13×256 27×27×256 K5C256S1 

Pool2 6×6×256 13×13×256 K3S2 

Conv3 6×6×384 13×13×384 K3C384S1P1 

Conv4 6×6×384 13×13×384 K3C384S1P1 

Conv5 6×6×256 13×13×256 K3C256S1P1 

Pool5 — 6×6×256 K3S2 

Selectio
n 
 

Unit
 

GAP 

↓ 

256 

↓ 

— 

FC1 16 D16 

FC2 256 D256 

Product 6×6×256 — 

Motio
n
 

 
Regressio

n
 

Connect 6×6×512 — 

FC3 4096 D4096 

FC4 4096 D4096 

FC5 4096 D4096 

FC6 4 D4 
 

referstokernelsize,channelnumbers,stride,paddingand
dimension,respectively. Alltheconvolutionallayersand
fullyconnectedlayersarefollowedbyReLU,exceptthatFC2
adoptsSigmoidfunctionandFC6usesidentityfunction.

2.3. AdaptiveLearning

Ideally,theselectionunitisabletoremovethenegativeef-
fectsofbackgroundclutters.Inpractice,limitedpatternsare
stillinadequatetoadaptarbitrarytrackingsequencewithout
learningtarget-specificinformation.Therefore,weapplyan
adaptivelearningmethodtoobtainmorediscriminativefea-
turesforthetrackingobject.
AsithasbeenanalysedinGOTURN[5]thatonlinetrain-

ingbringscomputationalcostwithoutsubstantialimprove-
ment. Wearguethatitisnotappropriatetofine-tunemotion
regressionφ,becauseitfocusesoncomparingtwosimilar
featuremapstopredictthemotion.Besides,wefoundthat
fine-tuningthefullyconnectedlayerstendstooverfit,since
therearemassiveparameters.



In this paper, we fix motion regression φ and update the
other two modules (feature representationϕ and selection unit
F) of ASNT in the initial frame. The parameters θ of two
top convolutional layers and the selection unit are updated by
applying Adam solver:

argmin
θ

N∑
i

||f(ti, si,θ)− yi||1, (3)

where f represents the whole network of ASNT, and N is the
total number of training pairs. ti and si refers to the target
patch and the search patch sampled in the first frame respec-
tively, and yi denotes the corresponding ground-truth bound-
ing box (upper-left and lower-right coordinates). To prevent
overfitting, we adopt multi-scale sampling

[
1,
√
2, 2
]

to aug-
ment training examples.

3. EXPERIMENTS

In this section, we compare the proposed ASNT with states-
of-the-art trackers on two standard benchmark datasets, and
analyse the effect of each component adopted in ASNT.

3.1. Implementation details

ASNT is trained using a combination of videos and images.
We remove the overlaps with the test datasets, and use 296
remaining videos out of 314 videos in ALOV300+ [22] as
training video sequences. We also leverage training set in Im-
ageNet [7], which includes 478,807 objects with annotated
bounding box. Different from [5], we sample two images
from a training video that both contain the object at most 100
frames randomly when training, and advocate to use the target
patch in the first frame when testing. Additionally, we aug-
ment these training examples using motion smooth [5] and
color jittering (including randomly adjusting brightness, hue,
contrast and saturation).

For offline training, the convolutional layers in ASNT
are pre-trained on ImageNet [7]. We fine-tune the top two
convolutional layers with a learning rate of 10−6 and fully-
connected layers with 10−5. The learning rate is divided by
10 every 500k iterations, and the channel dropout rate is set
to 0.5. For adaptive learning, we fine-tune the network in the
first frame, using Adam optimizer for 300 iterations with a
learning rate of 10−4. Our ASNT is implemented in C++ with
Caffe framework, and runs at 137 fps on a single NVIDIA
GeForce GTX 1080ti GPU.

3.2. Comparisons results

OTB-2013 dataset. We compare our ASNT with the trackers
reported by OTB-2103 benchmark [6] and six more state-of-
the-art trackers that can run in real-time (CFNet [16], SiamFC
[15], Staple [23], GOTURN [5], KCF [3], DSST [24]). The
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Fig. 3. Precision and success plots on OTB-2013. The scores
in the legend indicate the mean precision when the location
threshold is 20 pixels for the precision plots and area-under-
curve (AUC) for the success plots.

tracking performance is measured by conducting a one-pass
evaluation (OPE) based on precision score and success score.
Fig. 3 shows the evaluation results. We only show the top
10 trackers for presentation clarity. Among all the trackers,
the proposed ASNT performs favorably on the precision plots
against state-of-the-art real-time trackers and achieves com-
parable results on the success plots. After tracking initializa-
tion in the initial frame, the proposed ASNT is able to track
at 137 fps on a single GPU. However, for these tracking-by-
verification methods [15, 16], they need to process several
scale version of search image, which results in a much slower
speed. Specially, the proposed ASNT is able to achieve a
21.1% and 15.9% improvement in terms of precession score
and success score respectively compared to GOTURN [5].
The results clearly verify the superior tracking effectiveness
and efficiency of our approach.

Fig. 4. VOT2014 Accuracy-Robustness plot. Best trackers
are closer to the top right corner.

VOT-2014 dataset. We compare the proposed ASNT against
the best 10 trackers that participated in the 2014 edition
of the VOT challenge [20]. We also include two recent
real-time Siamese network based trackers: GOTURN [5],
SiamFC [15] (including two variants of SiamFC, SiamFC-
5s and SiamFC-3s, which search over 5 scales and 3 scales,
respectively). The trackers are evaluated using two stan-
dard tracking metrics: accuracy and robustness. Accuracy



Table 2. Average scores in percent of precision and success on different attributes: illumination variation (IV), scale variation
(SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rotation
(OPR), out-of-view (OV), background clutters (BC) and low resolution (LR). The best results are shown in red and the second
in blue. The last row shows the average speed of each tracker.

TLD [1] GOTURN [5] SCM [25] Struck [2] DSST [24] KCF [3] Staple [23] SiamFC [15] CFNet [16] ASNT (ours)
IV 53.7/39.9 52.8/39.9 59.4/47.3 55.8/42.8 73.0/56.1 72.8/49.3 74.1/56.8 71.7/54.2 72.1/53.1 77.1/55.6
SV 60.6/42.1 66.7/48.5 67.2/51.8 63.9/44.5 73.8/54.6 67.9/42.7 73.3/55.1 80.2/60.3 79.7/58.4 82.5/59.6

OCC 56.3/40.2 50.8/36.3 64.0/48.7 56.4/41.3 70.6/53.2 74.9/51.4 78.7/59.3 79.7/59.4 77.7/56.6 74.6/55.2
DEF 51.2/37.8 62.5/43.2 58.6/44.8 52.1/39.3 65.8/50.6 74.0/53.4 81.2/61.8 73.0/53.7 81.0/58.1 80.1/56.2
MB 51.8/40.4 45.8/34.4 33.9/29.8 55.1/43.3 54.4/45.5 65.0/49.7 68.8/54.1 72.6/54.3 67.6/53.5 73.8/53.1
FM 55.1/41.7 48.9/38.1 33.3/29.6 60.4/46.2 51.3/42.8 60.2/45.9 64.3/50.8 74.3/56.1 66.8/52.0 76.4/57.3
IPR 58.4/41.6 59.8/43.4 59.7/45.8 61.7/44.4 76.8/56.3 72.5/49.7 77.3/58.0 76.0/58.2 76.9/56.5 85.2/60.1
OPR 59.6/42.0 64.0/45.7 61.8/47.0 59.7/43.2 73.6/53.6 72.9/49.5 77.3/57.5 78.8/58.8 80.7/58.3 81.2/58.5
OV 57.6/45.7 45.0/37.4 42.9/36.1 53.9/45.9 51.1/46.2 65.0/55.0 67.9/54.7 77.5/63.5 44.3/42.3 71.0/55.5
BC 42.8/34.5 58.0/41.8 57.8/45.0 58.5/45.8 69.4/51.7 75.3/53.5 75.3/57.6 74.2/55.4 77.0/56.8 76.9/55.7
LR 34.9/30.9 36.8/27.1 30.5/27.9 54.5/37.2 49.7/40.8 38.1/31.2 55.0/43.8 73.1/56.6 55.3/43.4 60.8/46.1

Overall 60.8/43.7 62.0/44.4 64.9/49.9 65.6/47.4 74.0/55.4 74.0/51.4 79.3/60.0 81.5/61.2 82.2/61.0 83.1/60.3
Speed (fps) 28 165 0.5 20 24 172 80 58 67 137

is calculated as the average intersection-over-union (IOU),
while robustness is expressed in terms of total number of
failures. Within VOT2014 benchmark, trackers are automat-
ically re-initialized five frames after failure. Fig. 4 shows
the Accuracy-Robustness (AR) plot evaluated on VOT2014.
The proposed ASNT outperforms all previous methods in
VOT2014, GOTURN [5], and SiamFC [15]. Note that the
proposed ASNT has a 4% improvement in terms of mean ac-
curacy compared with GOTURN [5], which demonstrates the
effectiveness of the proposed method.

3.3. Analysis

Contribution of each component. Since the original imple-
mentation of GOURN [5] uses some videos that overlapped
with OTB-2013 [6] to train the network, we retrain GOTURN
after removing the overlapped videos. Our implementation of
GOTURN is slightly different in three ways. Firstly, we al-
ways crop the target patch in the first frame rather than the
previous frame. Secondly, we crop the target patch without
any background content. Thirdly, we adopt more augmen-
tation methods as described in Section 3.1. We further use
this implementation of GOTURN as our baseline (denoted as
Base).

To verify the contribution of each component, we anal-
yse the performance of four versions of ASNT on OTB-
2013: Base, extension with selection unit (SU), channel
dropout(CD), adaptive learning (AL) as shown in Fig. 5.
Note that Base+SU+CD+AL is equivalent to the full ver-
sion of ASNT. Especially, adaptive learning improves the dis-
crimination between background clutters and the tracking ob-
ject, which greatly enhances the performance. We found that
ASNT without channel dropout (Base+SU+AL, which is not
shown in Fig. 5 for presentation clarity) performs even worse
than Base. We argue that it suffers from overfitting with more

parameters. The experiment indicates that the proposed chan-
nel dropout is an important component in preventing overfit-
ting in both offline training and adaptive learning.
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Fig. 5. Precision and success plots on OTB-2013 for the self-
comparison of our algorithm.

Attribute-based analysis. In Table 2, we further analyse the
tracking performance under different video attributes anno-
tated in OTB-2013 [6]. The result indicates that the pro-
posed ASNT is effective in handling illumination variation
and fast motion. It is mainly because we adapt multi-scale
sampling technique and color jittering augmentation as de-
scribed in Section 3.1. Both GOTURN [5] and the proposed
ASNT perform well in scale variation, this can be attributed
to the motion smooth method used in offline training. For
background clutters sequence, the proposed ASNT gains a
significant improvement compared with GOTURN, this can
be due to section unit and adaptive learning. The proposed
ASNT utilizes fine-tuned CNN features, which are beneficial
for accurate location especially under in-plane rotation and
out-of-plane rotation situation.



4. CONCLUSION

In this work, we address the tracking drift problem for of-
fline trained trackers by learning an adaptive selection net-
work, while maintaining beyond real-time tracking speed. It
is worth noting that the selection unit with channel dropout is
very flexible and can benefit any other Siamese network based
trackers. By interpreting ASNT as three constituent mod-
ules, namely feature representation, selection unit and motion
regression, we propose an adaptive learning method, which
proves to be effective in experiments. In our future work, we
plan to integrate more background information into the se-
lection unit to facilitate adaptive learning. We also consider
exploring a lightweight architecture, which is of great impor-
tance for real-world tracking applications.
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