Venice, Italy October 22-29, 2017

1. Abstract

We propose a joint intrinsic-extrinsic prior (JieP) model to estimate both illumination and reflectance from an observed image. The 2D image formed from 3D object in the scene is affected by the intrinsic properties (shape and *texture*) and the extrinsic property (*illumination*). Based on a novel structurepreserving measure called *local variation deviation*, a joint intrinsic-extrinsic prior model is proposed for better representation.

2. Local Variation Deviation (LVD)

• Edge-aware Filters (*e.g.* BLF, RGF) Gibbs phenomenon of local filters result in ringing-effect near the edge. • Statistics-based Smoothing (*e.g.* WMF, LEF) For high-frequency signals, local statistics still produce oscillating results. • Optimization-based Method (*e.g.* WLS, RTV) They focus on relatively small variance and vulnerable to textures.

- Case 1: Flat. If *I* is almost constant,

- is vary small, so $\overline{D} \approx 0$ and $\overline{R} \approx 1$

A Joint Intrinsic-Extrinsic Prior Model for Retinex Bolun Cai¹ Xiangmin Xu¹ Kailing Guo¹ Kui Jia¹ Bin Hu² ¹ School of Electronic and Information Engineering, SCUT, China ² Ubiquitous Awareness and Intelligent Solutions Lab, LZU, China ³ UBTECH Sydney Al Centre, FEIT, USYD, Australia

The prior on *shape* is motivated by that the object shape tends to be oriented isotopically in the scene.

whe

3. Joint Intrinsic-Extrinsic Prior Model

• Intrinsic Prior on Shape & Texture

$$E_{s}\left(I\right) = \left\|\frac{\nabla_{x}I}{\frac{1}{|\Omega|}\sum_{\Omega}\nabla_{x}I + \epsilon}\right\|_{1} + \left\|\frac{\nabla_{y}I}{\frac{1}{|\Omega|}\sum_{\Omega}\nabla_{y}I + \epsilon}\right\|_{1}$$
The reflectores contains fine term

The reflectance contains fine *texture* and is piece-wise continuous, so the distribution of gradients is formulated with a Laplacian distribution. $E_{t}(R) = \|\nabla_{x}R\|_{1} + \|\nabla_{y}R\|_{1}$

• Extrinsic Prior on Illumination

The *illumination* prior is on the visual effect of inverted observed images -S, which is intuitively similar to haze images.

$$1 - S) = 1 - I \cdot R = (1 - R) \cdot I + (1 - I)$$

$$H = 1 - S, J = 1 - R$$

$$H = J \cdot T + a (1 - T)$$

$$Dark channel$$

$$T = 1 - \min_{\Omega} \left(\min_{c \in \{r,g,b\}} \frac{H^{c}}{a} \right)$$

$$Fig 2$$

$$E_{l}(I) = \|I - B\|_{2}^{2}$$

$$Ioint Optimization$$

$$E(I, R) = \|I \cdot R - S\|_{2}^{2} + \alpha E_{s}(I) + Iteratively Re-weighted$$

$$Least Square$$

$$(P1) I_{k} = [P1 + P1]^{2}$$

$$\begin{cases} E_{s}(I) = u_{x} \|\nabla_{x}I\|_{2} + u_{y} \|\nabla_{y}I\|_{2} \\ E_{t}(R) = v_{x} \|\nabla_{x}R\|_{2}^{2} + v_{y} \|\nabla_{y}R\|_{2}^{2} \\ Block Coordinate \\ Descent \\ \\ Descent \\ \\ u_{x/y} = \left(\left|\frac{1}{\Omega}\sum_{\Omega}\nabla_{x/y}I\right| \left|\nabla_{x/y}I\right| + \epsilon\right)^{-1} \\ v_{x/y} = \left(\left|\nabla_{x/y}R\right| + \epsilon\right)^{-1} \end{cases}$$
(P2) $R_{k} = \left(\left|\nabla_{x/y}R\right| + \epsilon\right)^{-1}$

4. Experiments											
	ah. 1:	Ret Des Ouantita	tinex com.	formance	e compat	rison on	ination 35 ima	Adj.	h NIOE a	And ARSI	
thod	HE	BPDFHE	SSR	MSRCR	NPE	GOLW	MF	LIME	SRIE	WVM	Ours
QE	3.4475	3.7267	3.3778	3.4295	3.4091	3.3647	3.5335	3.6155	3.4590	3.3594	3.3409
ISM	3.2902	3.3275	3.0469	3.1014	3.0891	3.3243	3.0200	3.1753	<u>2.9930</u>	2.9958	2.9917
Tab. 2: Comparison of color constancy with angle error on the Color-Checker Dataset											set
nod	White-Pa	atch Grey	-World G	ray-Edge	Shades-Gray	y Baye	sian C	NNs G	ray-World	Grey-Pixel	Ours
n (°)	7.5	5	6.36	5.13	4.93	4	4.82	4.73	4.66	4.60	4.32

4. Experiments											
T	h l h	Ouentite	inex com.	formance		is on on	ination 35 ima	Adj.	h NIOE	Image: set of the set of	
A Contraction				MSDCD							
Method	HE	BPDFHE	22K	MSKCK	NPE	GOLW	MF	LIME	SKIE	W V M	Ours
NIQE	3.4475	3.7267	3.3778	3.4295	3.4091	3.3647	3.5335	3.6155	3.4590	<u>3.3594</u>	3.3409
ARISM	3.2902	3.3275	3.0469	3.1014	3.0891	3.3243	3.0200	3.1753	<u>2.9930</u>	2.9958	2.9917
Tak	b. 2: Co	ompariso	on of co	lor consta	ancy with	n angle	error on	the Co	olor-Chec	cker Data	set
lethod	White-Pa	atch Grey-	World G	ray-Edge	Shades-Gray	Baye	sian C	'NNs G	ray-World	Grey-Pixel	Ours
lean (°)	7.5	5	6.36	5.13	4.93		4.82	4.73	4.66	4.60	4.32

Fig 1: The structure of illumination in the real-world

2: The inverted image of those shown in Fig. 1

$\beta E_t(R) + \lambda E_l(I)$

 $\arg \min \|I \cdot R_{k-1} - S\|_{2}^{2}$ $+\alpha \left(u_x \| \nabla_x I \|_2^2 + u_y \| \nabla_y I \|_2^2 \right) + \lambda \| I - B \|_2^2$ $= \arg\min \|I_k \cdot R - S\|_2^2$ $+\beta \left(v_{x} \| \nabla_{x} R \|_{2}^{2} + v_{y} \| \nabla_{y} R \|_{2}^{2} \right)$