

also propose a novel nonlinear activation function called BReLU, which is able to improve the quality of recovered haze-free image.

Feature Extraction

DehazeNet

Inspired by extremum processing of haze-relevant features, an unusual function called Maxout is selected for Feature Extraction. $F_1^i(x) = \max_{i \in [1,k]} g^{i,j}(x), g^{i,j} = W_1^{i,j} * I + B_1^{i,j}$

2. Multi-scale Mapping

Multi-scale features have been proven effective for haze removal, and is also effective to achieve scale invariance.

$$F_2^i = W_2^{\lceil i/3 \rceil, (i \setminus 3)} * F_1 + B_2^{\lceil i/3 \rceil, (i \setminus 3)}$$

3. Local Extremum

The local extremum is in accordance with the assumption that the medium transmission is locally constant, and it is commonly to overcome the noise of transmission estimation.

$$F_3^i\left(x\right) = \max_{y \in \Omega(x)} F_2^i\left(y\right)$$

Non-linear Regression 4.

Inspired by Sigmoid and ReLU, BReLU as a novel linear unit keeps bilateral restraint and local linearity.

 $F_4 = \min(t_{\max}, \max(t_{\min}, W_4 * F_3 + B_4))$

DehazeNet: An End-to-End System for Single Image Haze Removal

Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao South China University of Technology IEEE Transactions on Image Processing, 2016

DehazeNet Connections with Traditional Methods

We present layer designs of DehazeNet, and discuss how these designs are related to ideas in existing image dehazing methods. • When W_1 is an opposite and B_1 is a unit bias, the maximum output of F_1 is equivalent to the minimum of color channels, which is similar to dark channel D(x).

 $D(x) = \min$

contrast C(x).

 $C(x) = \max$ $y \in \Omega_r(x) \setminus | \Omega_s(y)$

H(x) features are extracted.

$$\begin{cases} I^{v}(x) = \max_{c} I^{c}(x) \\ \max_{c} I^{c}(x) - \min_{c} I^{c}(x) \end{cases}$$

(a) Opposite filter (b) All-pass filter (c) Round filter

- Based on the assumption that the scene depth, local maximum filters of F_3 remove the local estimation error.
- to the boundary constraints used in traditional methods.

Model and performance

$$\left(\min_{c\in\{r,g,b\}}I^{c}\left(y\right)\right)$$

• When the weight is a round filter W_1 , F_1 is similar to the **maximum**

$$\overline{|} \sum_{z \in \Omega_s(y)} \|I(z) - I(y)\|^2$$

• When W_1 includes all-pass/opposite filters, F_1 is similar to the max/min feature maps, which are atomic operations of the color transformation, then the **color attenuation** A(x) and **hue disparity**

$$\begin{cases} A(x) = I^{v}(x) - I^{s}(x) \\ H(x) = \left| I^{h}_{si}(x) - I^{h}(x) \right| \end{cases}$$

(e) The actual kernels learned from DehazeNet

• BReLU in F_4 restricts the values to alleviate noise, which is equivalent

Experiments

创新论坛

Metric	11								
Wieure	Hazy	ATM [39]	BCCR [11]	FVR [38]	DCP [9]		CAP ² [18]	RF [17]	DehazeNet
MSE	0.0481	0.0689	0.0243	0.0155	0.0172	0.0	075 (0.0068)	0.0070	0.0062
SSIM	0.9936	0.9890	0.9963	0.9973	0.9981	0.9	9 <u>91</u> (0.9990)	0.9989	0.9993
PSNR	61.5835	60.8612	65.2794	66.5450	66.7392	70.0	029 (70.6581)	70.0099	70.9767
WSNR	8.5958	7.8492	12.6230	13.7236	13.8508	16.9	873 (17.7839)	17.1180	18.0996
Evaluation		Hazy	ATM [39]	BCCR [11]	FVR [38]	DCP [9]	CAP ² [18]	RF [17]	DehazeNet
	0.75	00311	0.0581	0.0269	0.0122	0.0199	0.0043 (0.0042)	0.0046	0.0063
CRE	1.00	0.0481	0.0689	0.0243	0.0155	0.0172	0.0077 (0.0068)	0.0070	0.0062
$(\beta =)$	1.25	0.0658	0.0703	0.0230	0.0219	0.0147	0.0141 (0.0121)	0.0109	0.0084
	1.50	0.0833	0.0683	0.0219	0.0305	0.0134	0.0231 (0.0201)	0.0152	0.0127
CRE Average		0.0571	0.0653	0.0254	0.0187	0.0177	0.0105 (0.0095)	0.0094	0.0084
	[1.0, 1.0, 1.0]	0.0481	0.0689	0.0243	0.0155	0.0172	0.0075 (0.0068)	0.0070	0.0062
ARE [[0.9, 1.0, 1.0]	0.0437	0.0660	0.0266	0.0170	0.0210	0.0073 (0.0069)	0.0071	0.0072
$(\alpha =)$	[1.0, 0.9, 1.0]	0.0435	0.0870	0.0270	0.0159	0.0200	0.0070 (0.0067)	0.0073	0.0074
	[1.0, 1.0, 0.9]	0.0421	0.0689	0.0239	0.0152	0.0186	<u>0.0081</u> (0.0069)	0.0083	0.0062
ARE Average		0.0443	0.0727	0.0255	0.0159	0.0192	0.0075 (0.0068)	0.0074	0.0067
	0.40	0.0478	0.0450	0.0238	0.0155	0.0102	0.0137 (0.0084)	0.0089	0.0066
SRE	0.60	0.0480	0.0564	0.0223	0.0154	0.0137	0.0092 (0.0071)	0.0076	0.0060
(s =)	0.80	0.0481	0.0619	0.0236	0.0155	0.0166	0.0086 (0.0066)	0.0074	0.0062
	1.00	0.0481	0.0689	0.0243	0.0155	0.0172	0.0077 (0.0068)	0.0070	0.0062
SRE Average		0.0480	0.0581	0.0235	0.0155	0.0144	0.0098 (0.0072)	0.0077	0.0062
	10	0.0484	0.0541	0.0138	0.0150	0.0133	0.0065 (0.0070)	0.0086	0.0059
NDE	15	0.0488	0.0439	0.0144	0.0148	0.0104	0.0072 (0.0074)	0.0112	0.0061
$(\pi -)$	20	0.0493	_	0.0181	0.0151	0.0093	0.0083 (0.0085)	0.0143	0.0058
(o =)	25	0.0500	_	0.0224	0.0150	0.0082	0.0100 (0.0092)	0.0155	0.0051
	30	0.0508	-	0.0192	0.0151	0.0085	0.0119 (0.0112)	0.0191	0.0049
NRE Average		0.0495	-	0.0255	0.0150	0.0100	0.0088 (0.0087)	0.0137	0.0055

3. Qualitative results on real-world images

计算机视觉研究与应用

September 18-20.2016 Shanghai China

2. Quantitative results on synthetic images