VALSE 2016 FINX

0 0e
T o) 7 . TUPU IR - - o0
0 4 S
Bal Q'EE THEFUTUREOJO'SSIBLE 3 * :J = =N — RN BT ;oo 1219 UISEEQX:‘%
=B A R R HE KERGIHT FE AR L top+ Fl R 0] PLEARH

BIT: Biologically Inspired Tracker oHrs0

Bolun Cal, Xiangmin Xu, Xiaofen Xing, Kuli Jia, Jie Miao, Dacheng Tao
South China University of Technology
|[EEE Transactions on Image Processing, 2016

Abstract

Visual tracking Is challenging due to various factors. S S
Given the superior tracking performance of human visual ®= = T : £
system, an ideal design of Biologically Inspired Model = s —— | = am
IS expected to improve visual tracking. Based on the g Co,f,',',':fi,,g g e
analysis of the ventral stream in the visual cortex, the §| /mase <
biologically inspired tracker (BIT) simulates shallow < —— "\ AVG Pooling> ¥ CI=Clyupy+Clegsy i
neurons (Sl UnitS and Cl UnitS) o extract IOW-level ﬁ ﬁSvl-JLUn!its: classicl!plelcells C1 Units: cortical complex cells
features for the target appearance and Iimitates an
advanced learning mechanism (S2 units and C2 units) to ~ _
combine generative and discriminative models for target =2 7 Scale & Direction
location. In addition, Fast Gabor Approximation (FGA) ; ' ® ! Competing )
and Fast Fourier Transform (FFT) are adopted for real- =2 e s AVG-Proling
time learning and detection in this framework. = S2 Units: view-tuned learning }
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BIT: Biologically Inspired Tracker
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® S1 units: classical simple cells
In the primary visual cortex (V1), a simple cell has the
characteristics of multi-orientation, multi-scale and multi-frequency
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selection. and can be described as Gabor filters: Ny % os
X2 YQ 2 e BT [0.817 9
GEUEH ($1 yj 91 S (O-? /\)) — exp ( 2:2 ) COS (%X) " 04 RPT[[t;.J.811] | o4
= TGPR [0.760]
X247 sin (2 e |
Godd (7,9y,0,5(0,\)) = exp ( 302 ) S (TWX) o2t [ _gg‘gi‘[g?éié‘;l_ 02
2F /7 A L TLD [0.608] |
uy f VTS [0.575] | 01 e BT [0.817] |
Slgabo*r (Ia Y, ‘?a S) — I (ZL’, y) X Geven/odd (il?,, Y, 93 S) > 1) _m[[éj?%]]] e BT without O3 [0.517]
The color units are inspired by the color double-opponent system % 1o 20 3 P 50 0 I U 50
- - Location error threshold ocation error thresho
In the cortex, and are defined by Color Names: BIT | RPT[58] | TGPR[59] | ICF[60] | KCE[3] | Struck|23] | SCM[12] | TLD[55] | VTIS[61] | MIL[25]
Sleotor (,y,¢) = Map (R (z,y),G (z,y), B(x,y),c) Vv | 0.764 | 0827 0.687 0696 | 0.717 0.558 0.594 0.537 0.573 0.349
. . SV 0.786 0.802 0.703 0.707 0.667 0.639 0.672 0.606 0.582 0471
® C1 units: cortical complex cells OCC [ 0854 | 0765 0708 0817 | 0.4 0.564 0.640 0,563 0.534 0427
The cortical complex cells (V2) receive the response from Vi and | H | BT 0 e e
have the function of linear feature integration. E:ﬂ n.?:ﬂ n.?s ?g[?]ﬁ ?.313 F?B} F'ﬁﬂi} H:m g:; 3:;9 H’iiﬁ
- e 5 - 0 . 0.783 0.795 ).706 )73 )73 )61 B 58 : 453
Clypor (2, 7) = Z Slgabor (x,y) Ns, s, (T,y) = (S 1Zabor (z,y) + 5 1gabor (x + 0z, y + 0y) OPR | 0.831 0.807 0.741 0.741 0.724 0.597 0.618 0.596 0.604 0.466
g , Ns, 5, (z,y) 1 512 (@ + 6y, y) + S12 (z,y+ 0 ))0.5 OV 0.654 0.641 0.495 0.584 0.555 0.539 0.429 0.576 0.455 0.393
(zy)€x gabor z> Y gabor \*> Y Y BC 0.739 0.840 0.761 0.698 0.725 0.585 0.578 0.428 0.578 0.456
® S22 units: view-tuned |eaming LR 0.369 | 0.478 0.539 0.516 0.379 0.545 0.305 0.349 0.187 0.171
View-tuned learning from V2 to IT as a generative model, in which Multi-direction Gabor filters used in S1 units contribute to the

S2 units Is RBF distance between new input X and stored prototype P.

1 1
rsg = exp(—F”X — P|I*) = e:{p(—a(XTX + PTP —-2XTP)) ~exp(XTP)~ XTP

® C2 units: Utask-dependent learning
An CNN corresponding to task-dependent learning from IT to PFC
for the discrimination between target and background as
C2(x.,y) =W (r,y) ®S2(z,y)
Real-time BIT
® Fast Gabor Approximation (FGA)
Using several pairs of 1-D orthogonal Gabor filters G,, G,, the

approximate response of S1 units is defined as

{ Do (2,380, 0) =1 (@) © G (.80 1) | { o) =t (P e )

Dy (z,y,5(0,]))
D’g ('I"a Y,S (U: A)) — I($, y) ® G'y (yﬂ S (U: /\)) A() = \/Di (z,y,s) + Dﬁ (z,y,s)

A(),if ©(-)el0 —n/8,0+n/8)U
6+ 7w /8,0 + 97/8)

0, otherwise

Sloag () — { 6 — /8,60 + m/8)

0, otherwise

® Fast Fourier Transform (FFT)
The FFT speeds up the dense sampling of S2 and C2 response
calculation in the real-time BIT.

K
F (82001 () = = S F[C1%, (0] © F [O1F (k)]

k=1

G2z, = e (553 (0~ 2" + - "))
Solution: FW (z,y)] = i[[gj z jﬁ] Location: (,9) = ar(gmzl)ax C2¢11 (2, y)
Q MINIEYE sionce Panasonic Sﬁ

MiniEye Simple Eye  fa N#ETIRH A& F 0 =5

robustness of illumination (IV) and rotation (IPR and OPR). Pooling
operations in C1 and S2 units provide the shift and scale competitive to
deal with deformation (DEF) and scale (SV). The generative model In
S2 units and the discriminative model in C2 units rise to the challenges
of OCC and OV respectively.

The hybrid-model (81.7%) achieved excellent performances In
comparison to single-model (74.9% and 51.7%). In addition, the
performance gap between the discriminative model and the generative
model in the literature is 23.2%.

Survival Curves
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-or | 7~ Tracker | Speed (fps) | Precision (%)
0.8 5 BIT 449 81.7
07l | ICF|60] 68.8 76.4
| KCF[3] 284.4 73.9
0.6 4 TLDI[55] 28.1 60.8
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Video

The survival curves and average F-scores demonstrate that the BIT
achieves the best (0.724) overall performance on ALOV300++.
BIT tracks the object at an average speed of 45fps, which iIs

significantly faster than the second best tracker RPT (4.1 fps).
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